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Abstract

We study flexible public information design in global games. In addition to receiv-

ing public information from the designer, agents are endowed with exogenous private

information and must decide whether or not to “attack” a status-quo. The designer

does not trust the agents to play favorably to her and evaluates any policy under the

“worst-case scenario.” First, we show that the optimal policy removes any strategic

uncertainty by inducing all agents to take the same action, but without permitting them

to perfectly learn the fundamentals or the beliefs that rationalize other agents’ actions.

Second, we identify conditions under which the optimal policy takes the form of a simple

pass/fail test. Finally, we show that, when the designer cares only about the probability

of regime change, the optimal policy need not be monotone in fundamentals but then

identify conditions on payoffs and exogenous beliefs under which the optimal policy is

monotone.
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1 Introduction

Coordination plays a major role in many socio-economic environments. The damages to

society of mis-coordination can be severe and often call for government intervention. Think

of the possibility of default by major financial institutions in case investors run or refrain

from rolling over their short-term positions. Such defaults can trigger a collapse in financial

markets, with severe consequences for the real economy. Confronted with such prospects,

governments and supervising authorities have incentives to intervene. These interventions

often take the form of public information disclosures, such as stress testing or, more broadly,

releases of information aimed at influencing market beliefs.

In this paper, we study public information design in markets in which a large number of

receivers (e.g., investors in financial markets) must choose whether to play an action favorable

to the designer (e.g., pledging funds to the banking sector), or an “adversarial” action (e.g.,

refraining from pledging). A policy maker can flexibly design a policy disclosing information to

market participants about relevant economic fundamentals. The analysis delivers results that

are important for various situations in which coordination plays a major role, including bank

runs, currency crises, technology and standards adoption. In the context of stress testing,

the policy maker may represent a supervising authority attempting to prevent a run against

the banking sector. In the case of currency crises, the policy maker may represent a central

bank attempting to dissuade speculators from short-selling the domestic currency by releasing

information about the bank’s reserves and/or domestic economic fundamentals. In the case

of technology adoption, the policy maker may represent the owners of an intellectual property

trying to persuade heterogenous market users of the merits of a new product (Lerner and

Tirole (2006)).

The backbone of the model is a global game of regime change in which multiple agents must

choose between “attacking” a status quo or “refraining from doing so,” and where the success

of the attack depends on its aggregate size and on exogenous fundamentals. In addition to

receiving public information from the designer, agents are endowed with exogenous private

information. The designer does not trust the agents to play favorably to her and evaluates

any policy of its choice under the “worst-case” scenario. That is, when multiple rationalizable

strategy profiles are consistent with the information disclosed, the designer takes a “robust
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approach” by looking at the outcome that prevails when investors play according to the

rationalizable profile least favorable to her.1

We assume the policy maker can flexibly design a policy that disseminates publicly infor-

mation about relevant economic fundamentals. We use the model to address the following

questions: (a) Are there benefits to preventing market participants from predicting each oth-

ers’ actions and beliefs? (b) When are simple policies such as pass/fail tests optimal? (c) Are

there merits to non-monotone rules that induce the market to play favorably for intermediate

fundamentals but not necessarily for stronger ones?

Our first result establishes that, despite the fear of adversarial coordination, the optimal

policy satisfies the “perfect coordination property.” In each state, it induces all market par-

ticipants to take the same action, but without creating homogenous beliefs among market

participants. In other words, the optimal policy completely removes any strategic uncertainty

while preserving structural uncertainty. Given the public information disclosed, each receiver

can perfectly predict the action of any other receiver, but not the beliefs that rationalize such

actions. For example, an investor who is induced to pledge must not be able to determine

whether other investors pledge because they know that the fundamentals are so strong that de-

fault will never occur, irrespective of the aggregate pledge, or because they are confident that

other investors pledge. The optimal policy leverages the heterogeneity of investors’ primitive

beliefs by making pledging dominant for some investors based on their first-order beliefs, but

only iteratively dominant for others based on their higher-order beliefs.2 Under adversarial

coordination, preserving uncertainty over beliefs is key to the minimization of the risk of an

undesirable outcome such as default, or more, generally, regime change. When the designer

trusts the agents to follow her recommendations, the optimality of the perfect coordination

property is straightforward and follows from arguments similar to those establishing the Rev-

elation Principle (e.g., Myerson (1986)). This is not the case under adversarial coordination,

for information that facilitates perfect coordination may also favor rationalizable profiles in

which some of the agents play adversarially to the designer.

1Such a robust approach is motivated by the applications the analysis is meant for. For example, when
concerned about runs to the banking sector, policy makers typically do not trust the market to play favorably.

2The optimal policy does not ensure that pledging is the unique rationalizable action based on first-order
beliefs for all investors. It relies on a contagion argument through higher-order beliefs to induce all investors
to pledge under the unique rationalizable profile.
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Our second result shows that when the economic fundamentals and the agents’ beliefs

co-move in the sense that states in which fundamentals are strong are also states in which

most agents expect other agents to expect the fundamentals to be strong, and so on, then

the optimal policy takes the form of a simple “pass/fail” test, with no further information

disclosed to the market. It is known that, when the distribution from which the agents’ private

signals are drawn is log-supermodular, or, equivalently, satisfies the Monotone Likelihood Ratio

Property– in short MLRP, all agents follow monotone (i.e., cut-off) strategies, no matter

the public information. This is because, under MLRP, the agents’ "optimism ranking" is

preserved under Bayesian updating. If agent j is more optimistic than agent i before the

public announcement is made (formally, j’s beliefs dominate i’s beliefs according to the MLRP

order), then this continues to be the case after any public announcement. When this is the

case, disclosing information to the market in addition to whether or not the policy maker

expects regime change to happen when agents play adversarially does not help. We also show

that MLRP is key to the optimality of simple pass/fail policies. When the information the

policy maker discloses can be used to change the ranking of the investors’ optimism, the policy

maker can leverage the optimism reversal to spare more fundamentals from regime change by

disclosing information in addition to whether or not she expects regime change.3

In the context of stress testing, these results provide a foundation for the optimality of

simple pass/fail policies. Importantly, optimal stress tests should be transparent, in the sense

of facilitating coordination among investors, but should not generate consensus among market

participants about the soundness of the financial institutions under scrutiny.

Our third result is about the optimality of monotone pass/fail policies, that is, rules that

grant a pass grade if and only if fundamentals are above a given threshold. We show that the

optimality of such rules is related to the extent to which the policy maker’s preferences for

avoiding regime change vary with the fundamentals. We identify precise conditions involving

the policy maker’s preferences and the agents’ payoffs and exogenous beliefs under which

monotone rules are optimal. Such conditions are fairly sharp in the sense that, when violated,

3When, instead, the designer trusts her ability to coordinate the receivers on the course of action most
favorable to her, optimal policies always take the form of action recommendations, and hence pass/fail policies
are optimal, irrespective of the investors’ primitive beliefs. This is not the case under adversarial/robust
design.
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one can identify instances in which non-monotone rules strictly outperform monotone ones.4

The reason is that non-monotone rules make it more difficult for the agents to commonly

learn the fundamentals and hence permit the policy maker to give a pass grade to a larger set

of fundamentals. When the policy maker preferences for avoiding regime change do not vary

much with the fundamentals (in particular, when they are constant), non-monotone rules may

thus be optimal.

Organization. The rest of the paper is organized as follows. Below, we wrap up the in-

troduction with a brief review of the most pertinent literature. Section 2 presents the model.

Section 3 contains all the results about properties of optimal policies (perfect-coordination,

pass/fail, monotonicity). Section 4 discusses enrichments of the baseline model that accom-

modate for more general payoffs and the possibility that the policy maker faces uncertainty

about the fate of the regime. Section 5 concludes. The Appendix contains proofs omitted in

the main text, whereas the Online Appendix contains extended derivations of these proofs.

(Most) pertinent literature. The paper is related to a few strands of the literature.

The first one is the literature on adversarial coordination and unique implementation. See,

among others, Segal (2003), Winter (2004), Sakovics and Steiner (2012), Frankel (2017), Halac

et al. (2020), Halac et al. (2021). These papers study the design of transfers implementing

the desired outcome (e.g., the financing of a public good) as a unique equilibrium. Our paper

shares with these works the idea that iterative dominance can be exploited to economize on

costs when the designer does not trust the agents to play favorably to her. Contrary to these

papers, however, we consider a setting in which (a) the designer has no transfers, (b) the agents

are endowed with exogenous private information, and (c) iterative dominance is induced by

manipulating the agents’ first and higher-order beliefs.5

The second one is the literature on global games with endogenous information. Angeletos

et al. (2006) and Angeletos and Pavan (2013) study signaling in global games, where a policy

maker, with no commitment power, engages in costly actions (e.g, raising interest rates) to

influence the investors’ behavior. Angeletos and Werning (2006) investigate the role of prices

4We also show that the conditions guaranteeing the optimality of monotone rules are more stringent when
the policy maker faces multiple privately-informed receivers than when she faces either a single (possibly
privately-informed) receiver, or multiple receivers who possess no exogenous private information.

5See also Halac et al. (2022) for a recent paper in which unique implementation is achieved through a
combination of transfers and information provision.
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as a vehicle for information aggregation. Angeletos et al. (2007) consider a dynamic model

in which investors learn from the accumulation of private information and from the (possibly

noisy) observation of past outcomes. Cong et al. (2020) consider a dynamic setting similar

to the one in Angeletos et al. (2007) but allowing for policy interventions. Edmond (2013)

considers propaganda in global games, in a setting in which the policy maker manipulates the

investors’ private signals. Szkup and Trevino (2015), Yang (2015), Morris and Yang (2022),

and Denti (2023) study the acquisition of private information in global games.

The contribution of our paper vis-a-vis the above body of work is in identifying properties of

the optimal provision of public information when the sender can fully commit to her policy but

does not trust the receivers to play favorably to her. Goldstein and Huang (2016) characterize

the lowest fundamental threshold below which regime change occurs when the market play

adversarially and the policy maker restricts herself to binary monotone rules, whereas Galvão

and Shalders (2022) characterize the optimal monotone partitional structure by imposing

that, when two states are pooled into the same cell, all in-between states also pooled into the

same cell. Relative to these works, our paper establishes three key results: (a) it proves that

inducing all agents to take the same action is always optimal, despite the fear of adversarial

coordination; (b) it shows why, in general, binary policies are sub-optimal but then identifies

sharp conditions under which such policies are optimal; (c) it shows why, in general, non-

monotone rules permit to avoid regime change over a larger set of fundamentals but then

identifies sharp conditions under which optimal policies are monotone.

In a coordination setting with two privately-informed receivers and two states, Alonso and

Zachariadis (2021) show that, when the precision of the receivers’ exogenous information is

high, private and public information are complements in that an increase in the precision of

the investors’ private information leads to the provision of more accurate public information.

Li et al. (2021), and Morris et al. (2020) consider the design of private information in su-

permodular games in which the receivers possess no exogenous private information and play

adversarially. In contrast, we assume that the receivers are endowed with exogenous private

information and study the optimal design of public information. In most applications of in-

terest, agents are endowed with private information before hearing from the policy maker.

Therefore, allowing for private information when studying properties of optimal public dis-

closures is important given the type of applications the theory is meant for. Importantly, the
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structure of the optimal policy cannot be derived from simple extrapolations from the case

where agents are homogeneously informed. For example, the optimality of coordinating all

market participants to take the same action while preserving heterogeneity in beliefs about

fundamentals has special meaning only when agents are privately informed. Likewise, when

agents are privately informed, the optimal policy need not be binary or monotone. These

results are important both theoretically and for the implications they have in applications.

At a broad level, the paper is related also to the literature on information design, in

particular the one with multiple receivers. See, among others, Alonso and Camara (2016a),

Arieli and Babichenko (2019), Bardhi and Guo (2017), Basak and Zhou (2020a), Che and

Hörner (2018), Doval and Ely (2020), Galperti and Perego (2020), Gick and Pausch (2012),

Gitmez and Molavi (2022), Heese and Lauermann (2021), Inostroza (2023), Laclau and Renou

(2017), Mathevet et al. (2020), Shimoji (2021), and Taneva (2019). The key contribution vis-

a-vis this literature is in showing how the interaction between (a) adversarial coordination

and (b) exogenous private information among the receivers shapes the optimal provision of

public information.6

2 Model

Global games have been used to study the interaction between information and coordination

in many socio-economic environments, including bank-runs, debt crises, currency attacks,

investment in technologies with network externalities, technological spillovers, and political

change.

To ease the exposition, hereafter we describe the model and all the results in the context of

a specific game in the spirit of Rochet and Vives (2004) in which the agents are investors (e.g.,

fund managers, or unsecured bank depositors) deciding whether or not to pledge funds to one,

or multiple financial institutions, and where regime change occurs when these institutions

default on their obligations.7 The analysis, however, readily extends to many other global

games.

6See Bergemann and Morris (2019) and Kamenica (2019) for an overview on information design.
7Rochet and Vives (2004) consider a three-period economy a’ la Diamond and Dybvig (1983) but with

heterogenous investors, in which banks may fail early or late. As shown in that paper, the full model admits
a reduced-form version similar to the one considered here.
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Players and Actions. A policy maker designs an information disclosure policy, e.g.,

stress tests, call reports, publication of accounting standards, and disclosure of various macro

and financial variables that are jointly responsible for the profitability of the investors’ de-

cisions. The market is populated by a measure-one continuum of investors (the receivers)

distributed uniformly over [0, 1]. Each investor may either take a “friendly” action, ai = 1, or

an “adversarial” action, ai = 0. The friendly action is interpreted as the decision to pledge

(more generally, to "refrain from attacking”a given status quo). The adversarial action is in-

terpreted as the decision not to pledge (more generally, to “attack”). We denote by A ∈ [0, 1]

the size of the aggregate pledge.

Fundamentals and Exogenous Information. Consistently with the rest of the litera-

ture, we parameterize the relevant fundamentals by θ ∈ R. The fundamentals are exogenous

to the policy maker’s choice of a disclosure policy. It is commonly believed (by the policy

maker and the investors alike) that θ is drawn from a distribution F , absolutely continuous

over an interval Θ % [0, 1], with a smooth density f strictly positive over Θ. In addition,

each investor i ∈ [0, 1] is endowed with private information summarized by a uni-dimensional

statistic xi ∈ R drawn independently across investors given θ from an absolutely continuous

cumulative distribution function P (x|θ) with smooth density p(x|θ) strictly positive over an

(open) interval %θ ≡ (%θ, %̄θ) containing θ, with %θ, %̄θ monotone in θ. The bounds %θ, %̄θ can be

either finite or infinite. For example, when xi = θ+ σεi, with εi drawn from a uniform distri-

bution over [−1,+1], then, for any θ, %θ = θ− σ and %̄θ = θ+ σ. When, instead, xi = θ+ σεi

with εi drawn from a standard Normal distribution, then, for any θ, %θ = −∞ and %̄θ = +∞.

Furthermore, in this latter case, P (x|θ) = Φ((x−θ)/σ), where Φ is the cumulative distribution

function of the standard Normal distribution. We denote by x ≡ (xi)i∈[0,1] a profile of private

signals and by X(θ) the collection of all x ∈ R[0,1] that are consistent with the fundamentals

being equal to θ. As usual, we assume that any pair of signal profiles x,x′ ∈ X(θ) has the

same cross-sectional distribution of signals, with the latter equal to P (x|θ).

Regime change. The fundamentals θ parameterize the critical size of the aggregate

pledge that is necessary to avoid default. If A > 1 − θ, short-term obligations are met and

default is avoided. If, instead, A ≤ 1 − θ, default occurs. We denote by r = 1 the event in

which default is avoided and by r = 0 the event in which default occurs.8

8The model assumes that, given A and θ, the regime outcome is binary. The case in which default is
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Dominance Regions. For any θ ≤ 0, default occurs irrespective of the size of the

aggregate pledge, whereas for any θ > 1 default is averted with certainty. For θ ∈ (0, 1],

instead, whether or not default occurs is determined by the behavior of the market.

Payoffs. Each investor’s payoff differential between the friendly and the adversarial action

is equal to g (θ) > 0 in case default is avoided and b (θ) < 0 otherwise. In turn, the policy

maker’s payoff is equal to W (θ) in case default is avoided and L (θ) in case of default, with

W (θ) > L(θ) for all θ. When W and L are invariant in θ, the policy maker’s objective reduces

to minimizing the probability of default. The functions b, g, W , and L are all bounded. For

any (θ, A) ∈ Θ× [0, 1], then let

u (θ, A) ≡ g(θ)1(A > 1− θ) + b(θ)1(A ≤ 1− θ),

UP (θ, A) ≡ W (θ)1(A > 1− θ) + L(θ)1(A ≤ 1− θ)

denote the payoffs of a representative investor and of the policy maker, respectively, when

the fundamentals are θ and the aggregate size of the pledge is A. In Section 4, we extend

the analysis to a setting in which g, b,W,L also depend on the size of the pledge A, and on

variables that are orthogonal to θ and the investors’ exogenous signals. We also accommodate

for the possibility that default may be influenced by such additional variables.9

Policy. Let S be a compact Polish space defining the set of possible signal realizations.

A policy Γ = (S, π) consists of the set S along with a measurable mapping π : Θ → ∆(S)

specifying, for each θ, a probability distribution over the information disclosed to the market.

Timing. The sequence of events is the following:

1. The policy maker publicly announces the policy Γ = (S, π) and commits to it.10

2. The fundamentals θ are drawn from the distribution F and the investors’ exogenous

signals x ∈ X(θ) are drawn from the distribution P (x|θ).

3. The public signal s is drawn from the distribution π(θ) and is publicly observed.

“partial” is qualitatively similar, from a strategic standpoint, to the case where, given A and θ, the regime
outcome is stochastic and determined by variables that are not observable by the policy maker at the time of
her public announcement (see the discussion in Section 4).

9In the baseline model, agents are heterogenous only in terms of their beliefs. In the file “Additional
Material” on our websites, we show, however, that Theorem 1 extends to economies in which the agents have
heterogeneous payoffs.

10See Leitner and Williams (2023) for a discussion of the commitment assumption in stress testing.
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4. Investors simultaneously choose whether or not to pledge.

5. The regime outcome is determined (i.e., whether or not default occurred) and payoffs

are realized.

Adversarial Coordination and Robust Information Design. The policy maker does

not trust the market to follow her recommendations and play favorably to her (i.e., pledge

whenever θ > 0).11 Instead, she adopts a robust/conservative approach. She evaluates any

policy Γ under the “worst-case” scenario, i.e., she assumes that the market plays according to

the rationalizable strategy profile that is most adversarial to her, among all those consistent

with the policy Γ.

Definition 1. Given any policy Γ, the most aggressive rationalizable profile (MARP)

consistent with Γ is the strategy profile aΓ ≡ (aΓ
i )i∈[0,1] that minimizes the policy maker’s ex-

ante expected payoff over all profiles surviving iterated deletion of interim strictly dominated

strategies (henceforth IDISDS).

In the IDISDS procedure leading to MARP, investors use Bayes rule to update their beliefs

about the fundamentals θ and the other investors’ exogenous information x ∈ X(θ) using the

common prior F , the distribution of private signals P (x|θ), and the policy Γ. Under MARP,

given (x, s), each investor i ∈ [0, 1], after receiving exogenous information x from Nature

and endogenous information s from the policy maker, refrains from pledging whenever there

exists at least one conjecture over (θ, A) consistent with the above Bayesian updating and

supported by all other investors playing strategies surviving IDISDS, under which refraining

from pledging is a best response for the individual.

Remarks. Hereafter, we confine attention to policies Γ for which MARP exists.12 Be-

cause the game among the investors is supermodular (no matter the prior F , the distribution

P from which the exogenous signals are drawn, and the policy Γ), the strategy profile aΓ coin-

cides with the “smallest” Bayes-Nash equilibrium (BNE) of the continuation game among the

investors, and minimizes the policy maker’s payoff state-by-state, and not just in expectation.

11If she did, a simple monotone policy revealing whether or not θ > 0 would be optimal.
12Because the state is continuous, in principle, one can think of policies Γ for which the investors’ common

posteriors are not well-defined or, when combined with the investors’ exogenous information, are such that
the investors’ hierarchies of beliefs are not well-defined, in which case MARP may not exist.
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The reason why we consider MARP is that, in general, without imposing specific assumptions

on F , P , and Γ, the only way the “smallest” BNE can be identified is by the iterated deletion

of interim dominated strategies. In standard global games, the “smallest” BNE is typically

identified by assuming the investors’ signals are drawn from a distribution P satisfying the

monotone likelihood property (MLRP), which is also used to guarantee equilibrium unique-

ness. Here, we allow for arbitrary policies Γ, and do not require that, given Γ, the continuation

equilibrium be unique.

Furthermore, given a policy Γ = (S, π), when describing the investors’ behavior, we do

not distinguish between pairs (x, s) that are mutually consistent given Γ (meaning that the

joint density of (x, s) is positive, i.e.,
´
θ:s∈supp(π(θ))

p(x|θ)dF (θ) > 0) and those that are not.

Because the policy maker commits to the policy Γ, the abuse is legitimate and permits us

to ease the exposition. Any claim about the optimality of the investors’ behavior, however,

should be interpreted to apply to pairs (x, s) that are mutually consistent given Γ.

3 Properties of optimal policies

We now introduce and discuss three key properties of optimal policies.

3.1 Perfect-coordination property

Definition 2. A policy Γ = (S, π) satisfies the perfect-coordination property (PCP) if,

for any θ ∈ Θ, any exogenous information x ∈ X(θ), any public announcement s ∈ supp(π(θ)),

and any pair of individuals i, j ∈ [0, 1], aΓ
i (xi, s) = aΓ

j (xj, s), where aΓ = (aΓ
i )i∈[0,1] is the most

aggressive rationalizable profile (MARP) consistent with the policy Γ.

A disclosure policy thus has the perfect-coordination property if it coordinates all market

participants on the same action, after any information it discloses. For any θ ∈ Θ, any

s ∈ supp(π(θ)), let rΓ(θ, s) ∈ {0, 1} denote the regime outcome that prevails when investors

play according to aΓ, that is, rΓ(θ, s) = 1 (alternatively, rΓ(θ, s) = 0) means that default does

not occur (alternatively, occurs) when, given (θ, s), market participants play according to

MARP consistent with Γ. That the investors’ signals are drawn independently from P (x|θ),

conditional on θ implies that the cross-sectional distribution of signals is pinned down by

P (x|θ), and hence the regime outcome (that is, whether default occurs or not) is the same
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across any pair of signal profiles x,x′ ∈ X(θ) and thus depends only on Γ, θ, and s. We

also establish that Theorem 1 below extends to a larger class of economies in which signals

are not conditionally independent (see Section AM3 of the file “Additional Material” on our

webpages the discussion in Section 4 in the current document). The key property required

for the result to hold is the possibility for the designer to have access to information that is

a sufficient statistic of the investors’ information when predicting the sign of the investors’

payoff differential (between attacking and not attacking) under MARP. This property holds

when, for example, the correlated noise in the investors’ exogenous beliefs originates in public

signals the policy maker also has access to.13 Hereafter, we say that the policy Γ is regular if

MARP under Γ is well-defined and the regime outcome under aΓ is measurable in (θ, s).

Theorem 1. Given any (regular) policy Γ, there exists another (regular) policy Γ∗ satisfying

the perfect coordination property and such that, for any θ, the probability of default under Γ∗

is the same as under Γ.

The policy Γ∗ is obtained from the original policy Γ by disclosing, for each θ, in addition to

the information s ∈ supp(π(θ)) disclosed by the original policy Γ, a second piece of information

that reveals to the market whether at (θ, s), under MARP consistent with the original policy Γ,

aΓ, the investors’ expected payoff differential (between pledging and not pledging) is positive

or negative. Because in this simple economy, the sign of this differential is given by the regime

outcome, this additional piece of information coincides in the baseline model with the regime

outcome rΓ(θ, s) ∈ {0, 1}.

That, under the new policy Γ∗, it is rationalizable for all investors to pledge when the policy

discloses the information (s, 1), and to refrain from pledging when the policy discloses the

information (s, 0), is fairly straight-forward. In fact, the announcement of (s, 1) (alternatively,

of (s, 0)) makes it common certainty among the investors that θ > 0 (alternatively, that θ ≤ 1).

The reason why the result is not obvious is that the designer does not content herself with

one rationalizable profile delivering the desired outcome; she is concerned with the possibility

of adversarial coordination and, as a result, when she recommends to the investors to pledge,

13We conjecture that, as long as the above sufficient statistic property holds, Theorems 2 and 3 also extend
to settings in which the investors’ signals are not conditionally independent given θ. Whether the results
extend to some environments in which the sufficient statistic property is violated is an interesting question for
future work.
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she must guarantee that pledging is the unique rationalizable action for each investor, irre-

spective of his exogenous signal x. The proof in the Appendix shows that, when the additional

information is rΓ(θ, s), this is indeed the case.

To fix ideas, consider first the case where, under the original policy Γ, the regime outcome

rΓ(θ, s) is monotone in θ. The announcement that rΓ(θ, s) = 1 makes it common certainty

among the investors that θ > θ̂(s), for some threshold θ̂(s). In this case, all investors re-

vise their first-order beliefs about θ upward when receiving the additional information that

rΓ(θ, s) = 1. That each investor is more optimistic about the strength of the fundamentals,

however, does not guarantee that MARP under the new policy is less aggressive than under the

original one. In fact, the new piece of information changes not only the investor’s first-order

beliefs about θ but also his higher-order beliefs and the latter matter for the determination

of the most-aggressive rationalizable profile. More generally, rΓ(θ, s) need not be monotone

in θ. This is because MARP, under the original policy Γ, need not entail strategies that are

monotone in x. As a result, in general, the announcement that rΓ(θ, s) = 1 need not trigger

an upward revision of the investors’ beliefs.

Furthermore, in richer settings, whether regime change occurs or not may also depend

on variables other than θ for which both the policy maker and the market have imperfect

information about. Lastly, in more general settings, the investors’ payoffs may depend on A

beyond the effect that this variable has on the regime outcome.14

The result in Theorem 1 follows from the fact that, at any stage n of the IDISDS procedure,

any investor who, under the original policy Γ pledges under the most aggressive strategy profile

surviving n− 1 rounds of deletion, does so also under the new policy Γ∗. In the Appendix, we

show that this last property in turn follows from the game being supermodular along with the

fact that Bayesian updating preserves the likelihood ratio of any two states that are consistent

with no default under the original policy Γ. Formally, for any s ∈ supp(π(Θ)), any pair of

states θ′ and θ′′ such that (a) s ∈ supp π(θ′)∩supp π(θ′′), and (b) rΓ(θ′, s) = rΓ(θ′′, s) = 1, the

likelihood ratio of such two states under Γ∗ is the same as under the original policy Γ. This

property, together with the announcement that the payoff differential under MARP consistent

with the original policy Γ was positive, and the fact that the most aggressive strategy profile

14In Section 4, we explain that, in these richer economies, perfect coordination is attained by announcing
to the market the sign of the investors’ expected payoff differential at (θ, s).
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surviving n rounds of deletion of dominated strategies is less aggressive than the profile sur-

viving n− 1 rounds guarantees that, for any private signal x for which pledging was optimal

under MARP consistent with the original policy Γ, pledging is the unique rationalizable action

under the new policy Γ∗.15

The policy Γ∗ thus completely eliminates any strategic uncertainty. Indeed, when (s, 1)

(alternatively, (s, 0)) is announced, each investor knows that, under MARP, all other investors

will pledge (alternatively, will refrain from pledging), irrespective of their exogenous private

information. Importantly, while the policy Γ∗ removes any strategic uncertainty, it preserves

structural uncertainty, that is, heterogeneity in the investors’ first and higher-order beliefs

about θ. As explained in the Introduction, it is essential that investors who pledge are uncer-

tain as to whether other investors pledge because they find it dominant to do so, or because

when they count on other investors pledging, they find it iteratively dominant to do so, which

requires heterogeneity in posterior beliefs.

When it comes to disclosures in financial markets, Theorem 1 implies that optimal policies

should combine the announcement of a pass/fail result (captured by r ∈ {0, 1}) with the

disclosure of additional information (captured by s) whose role is to guarantee that, when

a pass grade is given, the extra information s the investors receive from the policy maker

makes pledging the unique rationalizable action. This structure appears broadly consistent

with common practice. The theorem, however, says more. It indicates that optimal disclosure

policies should be transparent but not in the sense of creating conformism in beliefs about

fundamentals. Rather, they should leave no room to ambiguity as to whether or not default

will be averted when a pass grade is announced. Preserving heterogeneity in beliefs about

fundamentals is key to minimizing the probability of default.

3.2 Pass/Fail

Our next result provides a foundation for policies that take a simple pass/fail form; it identifies

a key property of the investors’ beliefs under which such policies are optimal.

15Formally, the properties above imply that each investor’s posterior beliefs after hearing rΓ(θ,s)=1 are a
“truncation” that eliminates from the support states θ at which, under the most aggressive profile surviving
n rounds of IDISDS under Γ, the investor’s payoff from pledging would have been negative.
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Theorem 2. Suppose that p(x|θ) is log-supermodular. Then, given any policy Γ satisfying the

perfect coordination property, there exists a binary policy Γ∗ = ({0, 1}, π∗) that also satisfies

the perfect coordination property and such that, for any θ, the default probability under Γ∗ is

the same as under Γ.16

As anticipated in the Introduction, the log-supermodularity of p(x|θ) (equivalently, the

assumption that p(x|θ) satisfies the monotone likelihood ratio property – in short, MLRP))

implies that the policy maker cannot reverse the ranking in the investors’ optimism through her

public announcements. Whenever investor j is more optimistic than investor i (in the MLRP

order) based on her exogenous private information xj, she continues to be more optimistic after

hearing the policy maker’s announcement, irrespectively of the shape of the policy Γ. In turn,

this implies that MARP is always in monotone strategies, and hence that the policy maker

does not benefit from disclosing any information beyond the sign of the investors’ expected

payoff differential under MARP (which, in the baseline model, is determined by the fate of

the regime rΓ(θ, s)).

To see this more formally, take any policy Γ = (S, π) satisfying the perfect coordination

property. Given the result in Theorem 1, without loss of generality, assume that Γ = (S, π) is

such that S = {0, 1}×S, for some measurable set S, and is such that, under MARP, when the

policy discloses any signal (s, 1), pledging is the unique rationalizable action for each investor,

irrespective of their exogenous private information. Given the policy Γ, let UΓ(x, (s, 1)|k)

denote the expected payoff differential of an investor with exogenous private information x

who receives public information (s, 1) and who expects all other investors to pledge if and

only if their exogenous signal exceeds a cut-off k. No matter the shape of the policy Γ, when

p(x|θ) is log-supermodular, then MARP associated with the policy Γ is in monotone (i.e., cut-

off) strategies.17 Hence, each investor’s expected payoff differential when all other investors

play according to MARP can be written as UΓ(x, (s, 1)|k) for some k that depends on s.

That the original policy Γ satisfies the perfect-coordination policy in turn implies that, for

16The property that p(x|θ) is log-supermodular means that, for any x′, x′′ ∈ R, with x′ < x′′, and any
θ′, θ′′ ∈ Θ, with θ′′ > θ′, then p(x′′|θ′′)p(x′|θ′) ≥ p(x′′|θ′)p(x′|θ′′).

17Assume p(x|θ) is log-supermodular. Then, no matter Γ, when j’s beliefs dominate i’s beliefs (in the MLRP
order) before observing s, the same is true after observing s. Thus, at any round of the IDISDS procedure,
investors follow monotone strategies.
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any s and k such that (k, (s, 1)) are mutually consistent,18 UΓ(k, (s, 1)|k) > 0. That is, the

expected payoff differential of any investor whose private signal x coincides with the cutoff k

must be strictly positive. If this were not the case, the continuation game would also admit

a rationalizable profile (in fact, a continuation equilibrium) in which some of the investors

refrain from pledging, contradicting the fact that pledging irrespectively of x is the unique

rationalizable profile following the announcement of (s, 1).

Now consider a policy Γ∗ that, for any θ, draws the signal (s, 1) (alternatively, (s, 0)) from

the distribution π(θ) of the original policy Γ = (S, π) but conceals the information s and

only discloses r = 1 (alternatively, r = 0). By the law of iterated expectations, for all k with

(k, (s, 1)) mutually consistent, because UΓ(k, (s, 1)|k) > 0 then UΓ∗(k, 1|k) > 0. This implies

that the new policy Γ∗ also satisfies the perfect-coordination property. The policy maker can

thus drop the additional signals s from the original policy Γ and still guarantee that after

r = 1 is announced, pledging is the unique rationalizable action for all investors.

The inability to change the ranking in the investors’ beliefs through public announcements

is key to the optimality of simple pass/fail policies, as the next example shows.

Example 1. Suppose that θ is drawn from a uniform distribution over [−1, 2]. Given θ, each

investor i ∈ [0, 1] receives an exogenous signal xi ∈ {xL, xH}, drawn independently across

investors from a Bernoulli distribution with probability

Pr
{
xL|θ

}
=

2/3 if θ ∈ (0, 1/3) ∪ [2/3, 5/6) ∪ [1, 7/6) ∪ [4/3, 5/3)

1/3 if θ ∈ [1/3, 2/3) ∪ [5/6, 1) ∪ [7/6, 4/3) ∪ [5/3, 2).

The value of Pr
{
xL|θ

}
for θ ∈ [−1, 0] plays no role in this example, so it can be taken

arbitrarily. Suppose that investors’ payoffs are such that g(θ) = 1 − c and b(θ) = −c, for all

θ, with c ∈ (1/2, 8/15). There exits a deterministic policy that satisfies PCP and guarantees

that default does not occur for θ > 0, whereas no pass/fail policy can guarantee that default

does not occur for all θ > 0.19

18This means that the set θ ∈ Θ such that (a) k ∈ %θ and (b) (s, 1) ∈ supp(π(θ)) has positive measure.
19The example features signals drawn from a distribution with finite support. This property, however, is

not essential. Conclusions similar to those in the example obtain when the investors’ signals are drawn from
a continuous distribution. We thank Tommaso Denti for suggesting a similar example with finite signals and
Leifu Zhang for suggesting an example with continuous signals.
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Figure 1: Sub-optimality of simple pass/tail tests

Proof of Example 1. Figure 1 illustrates the signal structure considered in Example 1.

The dash line depicts the probability of signal xL whereas the solid line the complementary

probability of signal xH , as a function of θ.

Note that the investors’ posterior beliefs under the signal structure of Example 1 can be

ranked according to FOSD, but not according to MLRP. Each investor observing xH has

posterior beliefs about θ that dominate those of each investor observing xL in the FOSD

order. Nonetheless, the ratio p(xH |θ)/p(xL|θ) is not increasing in θ over the entire domain,

meaning that p(x|θ) is not log-supermodular and hence posteriors cannot be ranked according

to MLRP. Also note that, under the payoff specification in the example, pledging is optimal

for an investor assigning probability to default no greater than 1− c, whereas not pledging is

optimal if such a probability is at least 1− c.

To see that there exists no pass/fail policy guaranteeing that default does not occur for

all θ > 0, note that, by virtue of Theorem 1, if such a policy existed, there would also exist

a binary policy satisfying PCP and such that π(1|θ) = 0 for all θ ≤ 0 and π(1|θ) = 1 for

all θ > 0, with π(1|θ) denoting the probability that the policy discloses signal 1 when the

fundamentals are θ. Under such a policy, after hearing that s = 1, no matter the private

signal x, each investor assigns probability 1/2 to θ ∈ [0, 1] and probability 1/2 to θ ∈ [1, 2].

Because c > 1/2, each investor expecting all other investors to refrain from pledging (and
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hence default to occur for all θ ∈ [0, 1]) then finds it optimal to do the same. Hence, under

MARP consistent with the above policy, after the signal s = 1 is announced, all investors

refrain from pledging, meaning that the above policy fails to spare types θ ∈ [0, 1] from

default, when the investors play adversarially.

To see that, instead, the policy maker can avoid default for all θ > 0 using a richer policy,

consider the policy Γ = ({0, (1,mid) , (1, ext)} , π) that, in addition to publicly announcing a

pass grade, also announces whether the fundamentals are extreme (i.e., θ ∈ (0, 5/6)∪(7/6, 2]),

or intermediate (i.e., θ ∈ [5/6, 7/6]). Formally, for any θ ∈ [−1, 0], π (0|θ) = 1, meaning

that the policy maker assigns a failing grade. For any θ ∈ [5/6, 7/6], instead, π(1,mid|θ) =

1, meaning that the the policy maker announces a pass grade and that fundamentals are

intermediate. Finally, for any θ ∈ (0, 5/6) ∪ (7/6, 2], π(1, ext|θ) = 1 meaning that the policy

maker announces a pass grade and that fundamentals are extreme. See Figure 1 for a graphical

representation.

Under such a policy, pledging is the unique rationalizable action for any investor observing

a pass grade, no matter whether the investor also learns that the fundamentals are intermediate

or extreme; but hearing this extra information is precisely what guarantees the uniqueness of

the rationalizable action.

To see this, consider first the case in which the fundamentals are extreme, i.e., θ ∈ (0, 5/6)∪

(7/6, 2]. All investors with exogenous information xH find it dominant to pledge when hearing

s = (1, ext). In fact, even if all other investors refrained from pledging, the probability

that each investor with signal xH assigns to θ > 1 (and hence to the bank surviving) is

Pr
{
θ > 1|xH , ext

}
= 8/15 > c, making it dominant to pledge. As a consequence of this

property, each investor with exogenous private information xL finds it iteratively dominant to

pledge. This is because, for any θ ∈ [1/3, 5/6], even if all investors with exogenous information

equal to xL refrained from pledging, the aggregate size of the pledge from those investors

with information xH would suffice for the bank to survive. This means that the probability

that each investor with information xL assigns to the bank surviving is at least equal to

Pr
{
θ > 1/3|xL, (1, ext)

}
= 11/15, implying that it is optimal for the investor to pledge.

Next, consider the case in which fundamentals are intermediate, i.e., θ ∈ [5/6, 7/6]. In this

case, the ranking of the investors’ optimism is reversed, with those investors observing the xL

signal assigning higher probability to higher states. In particular, because each investor with
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information xL assigns probability 2/3 > c to θ ≥ 1, any such investor finds it dominant to

pledge. Because, for any θ ∈ (5/6, 1), 1/3 of the investors receives information xL, the minimal

size of the pledge that each investor with signal equal to xH can expect at any θ ∈ (5/6, 1) is

equal to Pr
{
xL|θ

}
= 1/3 > 1− θ, implying that even if all the less optimistic investors with

signal equal to xH refrained from pledging, the bank would survive. But this means, that

pledging is iteratively dominant for those investors receiving the xH signal.

Hence, the proposed policy spares any θ > 0 from default. Because all investors pledge

when they observe a pass grade, no matter whether they learn that the fundamentals are

extreme or intermediate, one may find it surprising that the policy maker needs to provide

the extra information. This is a consequence of the policy maker not trusting the market to

play favorably to her. The extra information is precisely what guarantees the uniqueness of

the rationalizable action. �

As anticipated above, the benefits from disclosing information in addition to the pass

(or fail) grade stem from the possibility to reverse the ranking of the investors’ optimism,

which is possible only when the distribution p(x|θ) is not log-supermodular. In the example

above, the most optimistic investors are those observing the xL-signals when the fundamentals

are intermediate, whereas they are those observing the xH-signals when the fundamentals are

extreme. The reversal in the investors’ optimism in turn permits the policy maker to guarantee

that pledging is the unique rationalizable action over a larger set of fundamentals (the entire

set θ > 0 in the example).

The above example also illustrates the failure of the Revelation Principle when the policy

maker is concerned with unique implementation (equivalently, when the market is expected

to play according to MARP). It is well known that, in this case, confining attention to policies

that take the form of action recommendations is with loss of generality. The contribution of

Theorem 2 is in showing that, notwithstanding such a qualification, the optimal policy does

take the form of actions recommendation in the special case in which beliefs co-move with

fundamentals according to MLRP.
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3.3 Monotone rules

We now turn to the optimality of policies that fail with certainty institutions with weak

fundamentals and pass with certainty those with strong fundamentals. As anticipated in the

Introduction, the optimality of such rules crucially depends on whether the policy maker’s pref-

erences for avoiding regime change (i.e., default) for stronger fundamentals are large enough to

compensate for the possibility that non-monotone rules may permit her to reduce the ex-ante

probability of regime change. .

In this subsection, we identify a condition relating the policy maker’s preferences to the

investors’ exogenous beliefs and payoffs under which monotone rules are optimal. We show

that the condition is fairly sharp in that, when violated, one can identify economies in which

non-monotone rules do strictly better than monotone ones.

We assume that{
x ∈ R :

ˆ
Θ

u (θ, 1− P (x|θ)) 1(θ > 0)p (x|θ) dF (θ) ≤ 0

}
6= ∅. (1)

When Condition (1) is violated, the expected payoff differential between pledging and not

pledging is positive for any investor who is informed that fundamentals are non-negative and

who expects each investor to pledge when receiving a signal above hers and not to pledge when

receiving a signal below hers. In this case, the information-design problem is uninteresting

because the policy maker can save all θ > 0 through a policy that announces whether or not

θ > 0. Then, let

x̄G ≡ sup

{
x ∈ R :

ˆ
Θ

u (θ, 1− P (x|θ)) 1(θ > 0)p (x|θ) dF (θ) ≤ 0

}
. (2)

As we show in the Appendix, x̄G is an upper bound for the set of cut-offs characterizing

the strategies consistent with MARP across all disclosure policies Γ satisfying the perfect

coordination property.

For any x, let Θ(x) ≡ {θ ∈ Θ : x ∈ %θ} denote the set of fundamentals that, given the

distribution P (·|θ) from which the investors’ signals are drawn, are consistent with private

information x.

Condition M. The following properties hold :
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1. inf Θ(x̄G) ≤ 0;

2. For any θ0, θ1 ∈ [0, 1], with θ0 < θ1, and x ∈ %θ0, such that (a) x ≤ x̄G and (b)

P (x|θ1) ≥ θ1,
W (θ1)− L(θ1)

W (θ0)− L(θ0)
>
p (x|θ1) b (θ1)

p (x|θ0) b (θ0)
. (3)

Property 1 in Condition M says that the lower bound of the support of the beliefs of the

marginal investor with signal x̄G, where x̄G is the threshold defined in (2), is non-positive and

therefore that, according to this investor, there is a positive probability that fundamentals

are such that default is unavoidable, no matter the size of the pledge. Clearly, this property

trivially holds when, for any θ, the investors’ signals are drawn from a distribution whose

support is large enough (and hence, a fortiori, when the noise in the investors’ signals is

drawn from a distribution with unbounded support, e.g., a Normal distribution).

Property 2 in Condition M is the key property anticipated at the beginning of the sub-

section. It says that the policy maker’s preferences for avoiding regime change grow with

the fundamentals θ sufficiently fast to compensate for the possibility that non-monotone rules

may permit the policy maker to avoid regime change over a larger measure of fundamentals.

The benefit that the policy maker derives from avoiding default must increase with the fun-

damentals at a sufficiently high rate, with the critical rate determined by a combination of

the investors’ loss in case of default and beliefs (the right-hand-side of (3)).

Theorem 3. Suppose that p(x|θ) is log-supermodular and Condition M holds. Given any

policy Γ, there exists a deterministic monotone policy Γθ̂ = ({0, 1}, πθ̂) satisfying the perfect-

coordination property and yielding the policy maker a payoff weakly higher than Γ. The policy

Γθ̂ is such that there exists a threshold θ̂ ∈ [0, 1] such that, for any θ ≤ θ̂, πθ̂(θ) assigns

probability one to s = 0, whereas for any θ > θ̂, πθ̂(θ) assigns probability one to s = 1.

When Condition M holds, the choice of the optimal policy reduces to the choice of the

smallest threshold θ̂ such that, when investors commonly learn that θ > θ̂, under the unique

rationalizable profile, all investors pledge, irrespective of their exogenous private information.

For this to be the case, it must be that, for any x ∈ R,
´∞
θ̂
u(θ, 1− P (x|θ))p(x|θ)dF (θ) > 0.

The above problem, however, does not have a formal solution, due to the lack of upper-

hemicontinuity of the designer’s payoff in θ̂. Notwithstanding these complications, hereafter
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we follow the pertinent literature and refer to the “optimal monotone policy” as the one

defined as follows.

For any θ ∈ (0, 1), let x∗(θ) be the critical signal threshold such that, when investors follow

a cut-off strategy with threshold x∗(θ) (that is, pledge for x > x∗(θ) and refrain from pledging

for x < x∗(θ)), default occurs if and only if the fundamentals are below θ.20 Let

θ∗ ≡ inf

{
θ̂ ≥ 0 :

ˆ ∞
θ̂

u
(
θ̃, 1− P

(
x∗(θ)|θ̃

))
p
(
x∗(θ)|θ̃

)
dF (θ̃) ≥ 0 for all θ ∈

[
θ̂, 1
)}

(4)

be the lowest truncation point θ̂ such that, when the policy reveals that fundamentals are above

θ̂, then for any possible default threshold θ ∈
[
θ̂, 1
)

, if default were to occur for fundamentals

below θ and not for fundamentals above θ, then the marginal investor with signal x∗(θ) would

find it optimal to pledge. Hereafter, we assume that θ∗ is well-defined, which is always the

case when21

θ## ≡ sup

{
θ ∈ (0, 1) :

ˆ
Θ

u
(
θ̃, 1− P

(
x∗(θ)|θ̃

))
p
(
x∗(θ)|θ̃

)
dF (θ̃) ≤ 0

}
< 1.

The optimal monotone policy is the one with cut-off θ̂ = θ∗.22

Importantly, each property of Condition M is needed for the result in Theorem 3, as the

discussion and the examples below illustrate.23

20For any θ ∈ (0, 1), the threshold x∗(θ) is implicitly defined by P (x∗(θ)|θ) = θ. When the noise in the
investors’ signals is bounded, the definition of x∗(θ) can be extended to θ = 0 and θ = 1. When the noise is
unbounded, abusing notation, one can extend the definition to θ = 0 and θ = 1 by letting x∗(0) = −∞ and
x∗(1) = +∞.

21For any θ̂ ∈ (θ##, 1), and any θ ∈
[
θ̂, 1
)

,

0 <

ˆ ∞
−∞

u
(
θ̃, 1− P

(
x∗(θ)|θ̃

))
p
(
x∗(θ)|θ̃

)
dF (θ̃) <

ˆ ∞
θ̂

u
(
θ̃, 1− P

(
x∗(θ)|θ̃

))
p
(
x∗(θ)|θ̃

)
dF (θ̃).

Hence, when θ## < 1, θ∗ is well defined.
22The reason why this is an abuse is that, under the monotone policy with cut-off θ∗, in the continuation

game that starts after the policy maker announces s = 1, there exists a rationalizable profile in which some
of the investors refrain from pledging. However, there exists a monotone policy with cut-off θ̂ arbitrarily close
to the threshold θ∗ such that, after the policy maker announces s = 1 (equivalently, that θ ≥ θ̂), the unique
rationalizable profile features all investors pledging. Because the policy maker’s payoff under the latter policy
is arbitrarily close to the one she obtains when all investors pledge for θ > θ∗ and refrain from pledging when
θ ≤ θ∗, the abuse appears justified.

23The previous literature characterized the threshold θ∗ by restricting attention to monotone rules. The
contribution of Theorem 3 is in identifying the conditions under which such rules are optimal. Importantly,
these conditions are not met in the works that restrict attention to monotone rules. As the examples below
suggest, monotone rules can be improved upon in those settings.
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As we show in the Appendix, Property 1 in Condition M guarantees that, starting from

the optimal monotone policy (the one with cut-off θ∗), one cannot perturb the policy by

assigning a pass grade also to a small interval [θ′, θ′′] of fundamentals with 0 ≤ θ′ < θ′′ < θ∗,

while guaranteeing that pledging remains the unique rationalizable action when the policy

maker announces a pass grade (i.e., when signal s = 1 is disclosed). This property trivially

holds when the noise in the investors’ signals is large (and hence, a fortiori, when noise is

unbounded), but plays a key role when the noise is drawn from a bounded interval of small

size (see Example 2 below for an illustration).

Property 2 of Condition M in turn guarantees that, given a non-monotone rule, pertur-

bations of the original policy that swap the probability of inducing all investors to pledge

from low to high fundamentals in a way that preserves the uniqueness of the investors’ ra-

tionalizable action after hearing that s = 1, increase the policy maker’s payoff. Property 2

guarantees that the higher value that the policy maker derives from avoiding default when

fundamentals are higher compensates for the possibility that, from an ex-ante perspective,

the probability of regime change (i.e., default) may be larger under monotone policies than

under non-monotone ones (see Example 3 for an illustration of why non-monotone rules may

permit the policy maker to avoid default over a larger measure of fundamentals).

As anticipated above, Condition M is fairly sharp in the sense that, when violated, one

can identify economies in which the optimal policy is non-monotone. We provide two such

examples below. Example 2 illustrates the role of property 1 in Condition M, whereas Example

3 illustrates the role of property 2 in Condition M. These examples also illustrate why non-

monotone rules, in general, may reduce the set of fundamentals over which regime change

happens.

Let θMS ∈ (0, 1) be implicitly defined by the unique solution to

ˆ 1

0

u(θMS, A)dA = 0. (5)

The threshold θMS corresponds to the value of the fundamentals at which an investor who

knows θ and holds Laplacian beliefs with respect to the measure of investors pledging is

indifferent between pledging and not pledging.24 Importantly, θMS is independent of the

24This means that the investor believes that the proportion of investors pledging is uniformly distributed
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Figure 2: Sub-optimality of deterministic binary monotone policies.

initial common prior F and of the distribution of the investors’ signals.

Example 2. Suppose that there exist scalars g, b ∈ R, with g > 0 > b, such that, for any θ,

g(θ) = g, and b(θ) = b. Assume that θ is drawn from a uniform distribution with support

[−K, 1 + K], for some K ∈ R++. Finally, assume that the investors’ exogenous signals are

given by xi = θ + σεi, with σ ∈ R++ and with each εi drawn independently across investors

from a uniform distribution over [−1, 1], with σ < K/2. Let θ∗σ be the threshold defined

in (4), applied to the primitives described in this example.25 There exists σ# ∈ (0, K/2)

such that (a) inf Θ(x∗
σ#(θMS)) > 0, and (b) for all σ ∈ (0, σ#), starting from the optimal

monotone policy with cut-off θ∗σ, there exists a deterministic non-monotone policy satisfying

the perfect-coordination property and permitting the policy maker to avoid default over a set

of fundamentals of strictly larger probability measure than the optimal monotone policy.

A detailed proof with all derivations is in the Online Appendix. Here we sketch the key

arguments. To fix ideas, let g = 1− c and b = −c, with c ∈ (0, 1), as in Example 1, and recall

that, under such a payoff specification, pledging is optimal when the probability of regime

change (i.e., default) is no greater than 1 − c, whereas not pledging is optimal when such a

probability exceeds 1− c.

over [0, 1]. See Morris and Shin (2006).
25Hereafter, the subscript σ in θ∗σ and x∗σ is meant to highlight that these thresholds are those for the

economy in which the noise in the investors’ exogenous private signals is scaled by σ.
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For any θ ∈ [0, 1], let x∗σ(θ) be the critical signal threshold such that, when all investors

pledge for x > x∗σ(θ) and refrain from pledging for x < x∗σ(θ), regime change occurs if and

only if the fundamentals are below θ. For any binary policy Γ = ({0, 1}, π), and any threshold

θ ∈ [0, 1] such that (x∗σ(θ), 1) are mutually consistent, then let

V Γ
σ (θ) ≡ UΓ

σ (x∗σ(θ), 1|x∗σ(θ)) ,

denote the payoff of the marginal investor with signal x∗σ(θ), after the policy Γ announces that

s = 1, where UΓ
σ is the function defined after Theorem 2.26

Now, for any θ̂ ∈ Θ, let Γθ̂ = ({0, 1}, πθ̂) be the deterministic, binary, monotone rule with

cut-off θ̂. Note that the absence of any public disclosure is equivalent to a monotone policy

with cut-off θ̂ = min Θ = −K and that, under such a policy, default occurs if and only if

θ ≤ θMS = c.

A necessary and sufficient condition for all investors to pledge under MARP after the

monotone policy Γθ̂ announces that s = 1 is that, for any possible default threshold θ > θ̂,

V Γθ̂

σ (θ) > 0. Next note that the lowest fundamental in the support of x∗σ(θ)’s beliefs is

x∗σ(θ)− σ. Hence, when x∗σ(θ)− σ > θ̂, the marginal investor with signal x∗σ(θ) already knows

from his private information that fundamentals are above θ̂ and thus learns nothing from the

announcement that s = 1. Because, in the absence of any public disclosure, the payoff of the

marginal investor is strictly negative for all θ < θMS, this implies that the cut-off θ∗σ for the

optimal deterministic monotone rule is θ∗σ = x∗σ(θMS)− σ.

Now to see that the optimal monotone policy is improvable, assume that σ is small so that

x∗σ
(
θMS

)
− σ > 0. Next, pick γ, δ > 0 small and let θ′′ ≡ x∗σ(θMS − δ) − σ and θ′ ≡ θ′′ − γ,

with θ′ > 0. Consider a binary policy Γγ,δ = ({0, 1}, πγ,d) that, in addition to announcing

a pass grade s = 1 when fundamentals are above θ∗σ (as the optimal monotone rule does)

also announces s = 1 when θ ∈ [θ′, θ′′]. Let V
Γγ,δ
σ (θ) be the payoff of the marginal investor

with signal x∗σ(θ) under the new rule Γγ,δ, after the policy maker announces that s = 1. This

payoff is represented in Figure 2 along with the payoff V Γθ
∗
σ

σ (θ) under the optimal monotone

rule. Provided that γ and δ are small, V
Γγ,δ
σ (θ) ≥ 0 for all θ for which (x∗σ(θ), 1) are mutually

consistent under Γγ,δ, with V
Γγ,δ
σ (θ) = 0 if and only if θ = θMS. Starting from Γγ,δ, one can

26Recall that the payoff of the marginal investor is computed under the expectation that each investor with
signal below x∗σ(θ) refrains from pledging whereas each investor with signal above x∗σ(θ) pledges.
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then further perturb the policy Γγ,δ by giving a fail grade to banks with fundamentals in

[θ∗σ, θ
∗
σ + ε], with ε > 0 small. The new policy Γ̃ so constructed is such that V Γ̃

σ (θ) > 0 for all

θ for which (x∗σ(θ), 1) are mutually consistent under Γ̃, meaning that, when the policy maker

announces that s = 1, pledging is the unique rationalizable action for all investors. The policy

Γ̃ thus satisfies the perfect-coordination property and guarantees that default occurs over a

set of fundamentals of strictly smaller measure than the optimal monotone one.

The reason why the non-monotone policy Γ̃ constructed in the proof of Example 2 guar-

antees that default occurs over a smaller set of fundamentals than the optimal deterministic

monotone policy (the one with threshold θ∗σ) is that investors receiving signals around θMS

are highly sensitive to the grade the policy gives to banks with fundamentals around θMS but

not so much so to the grade given to fundamentals far from θMS. In the above example with

bounded noise, an investor receiving a signal x∗σ(θMS) is not sensitive at all to the grade the

policy gives to fundamentals below x∗σ(θMS) − σ because his private signal informs him that

the fundamentals are above x∗σ(θMS)− σ. Hence, while it is impossible to amend the optimal

deterministic monotone policy (the one with cut-off θ∗σ = x∗σ(θMS)−σ) by giving a pass grade

also to fundamentals slightly below θ∗σ without inducing some of the investors to refrain from

pledging, it is possible to amend the optimal deterministic monotone policy by extending the

pass grade to an interval [θ′, θ′′] of fundamentals sufficiently “far away” from θ∗σ, while con-

tinuing to induce all investors to pledge under MARP. The reason why such improvements

are not feasible under Condition M in Theorem 3 is that Property 1 in Condition M implies

that x∗σ(θMS) − σ < 0, thus making the above construction unfeasible.27 Interestingly, when

θ ∈ [θ′, θ′′], because of the bounded support of investors’ beliefs, a positive-measure set of

investors know with certainty that θ ∈ [θ′, θ′′], and yet the unique rationalizable action for

them and the rest of investors remains to be pledging; this is because, by design, the policy Γ̃

prevents that, when θ ∈ [θ′, θ′′], such an event is commonly learned.

The next example considers an economy in which the noise in the investors’ exogenous

signals is drawn from an unbounded distribution (in which case, property 1 in Condition M

trivially holds), but property 2 is violated.

27Under property 1 in Condition M, the marginal investor with signal x∗σ(θMS), based on his private infor-
mation, does not rule out any fundamental in the region (0, θMS). Hence, any perturbation of the optimal
monotone policy passing fundamentals to the left of θMS induces the investor to refrain from pledging.
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Given any binary policy Γ = ({0, 1}, π) in which π is deterministic (meaning that, for any θ,

π(θ) assigns probability 1 either to s = 1 or to s = 0), let DΓ =
{

(θi, θ̄i] : i = 1, ..., N
}

denote

the partition of
(
0, θMS

]
induced by π, with N ∈ N, θ1 = 0, and θN = θMS.28 Let d ∈ DΓ

denote a generic cell of the partition DΓ and, for any θ ∈ (0, θMS], denote by dΓ (θ) ∈ DΓ the

cell that contains θ. Finally, let M (Γ) ≡ maxi=1,...,N |θ̄i − θi| denote the mesh of DΓ, that

is, the Lebesgue measure of the cell of DΓ of maximal Lebesgue measure. Example 3 below

shows that, when the noise in the investors’ information is small, any deterministic binary

policy of large mesh can be improved upon by a non-monotone deterministic binary policy

with a smaller mesh. This property in turn implies that, when the noise is small, optimal

policies are highly non-monotone.

Example 3. Suppose that θ is drawn from an improper uniform prior over R and that the

investors’ signals are given by xi = θ+σεi with εi drawn from a standard Normal distribution.29

Further assume that there exist scalars g, b,W,L ∈ R, with g > 0 > b and W > L, such that,

for any θ, g(θ) = g, b(θ) = b, W (θ) = W and L(θ) = L. There exists a scalar σ̄ > 0

and a function E : (0, σ̄] → R+, with limσ→0+ E(σ) = 0, such that, for any σ ∈ (0, σ̄], in

the game in which the noise in the investors’ information is σ, the following is true: given

any deterministic pass/fail policy Γ = ({0, 1}, π) satisfying the perfect-coordination property

and such that M (Γ) > E(σ), there exists another deterministic pass/fail policy Γ∗ with

M (Γ∗) < E(σ) that also satisfies the perfect-coordination property and such that the ex-ante

probability of default under Γ∗ is strictly smaller than under Γ.

See the Online Appendix for a detailed derivation of the result. Here we discuss the main

ideas. Non-monotone policies permit the policy maker to avoid default over a larger set of

fundamentals by making it difficult for the investors to commonly learn the fundamentals when

the latter are between 0 and θMS and the policy maker announces a pass grade. Intuitively,

if the policy maker assigned a pass grade to an interval (θ′, θ′′] ⊂ (0, θMS] of large Lebesgue

measure, when σ is small and θ ∈ (θ′, θ′′], most investors would receive private signals xi ∈
28That is, π(θ) = 0 represents the Dirac distribution assigning measure one to s = 0 and π(θ) = 1

be the Dirac distribution assigning measure one to s = 1. DΓ is such that either (a) π(θ) = 0 for all
θ ∈ ∪i=2k,k=1,2,...,N

(
θi, θ̄i

]
and π(θ) = 1 for all θ ∈ ∪i=2k−1,k=1,2,...,N

(
θi, θ̄i

]
, or (b) π(θ) = 1 for all

θ ∈ ∪i=2k,k=1,2,...,N

(
θi, θ̄i

]
and π(θ) = 0 for all θ ∈ ∪i=2k−1,k=1,2,...,N

(
θi, θ̄i

]
.

29The improperness of the prior simplifies the exposition but is not important. The investors’ hierarchies of
beliefs are still well-defined.
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(θ′, θ′′]. No matter the grade assigned to fundamentals outside the interval (θ′, θ′′], in the

continuation game that starts after the policy maker announces a pass grade, most investors

with signals xi ∈ (θ′, θ′′] would then assign high probability to the joint event that θ ∈ (θ′, θ′′],

that other investors assign high probability to θ ∈ (θ′, θ′′], and so on. When this is the case, it

is rationalizable for such investors to refrain from pledging. Hence, when σ is small, the only

way the policy maker can guarantee that, when θ ∈ (0, θMS], the investors pledge after hearing

a pass grade is by dividing the subset of (0, θMS] into a collection of disjoint intervals, each of

small Lebesgue measure. This guarantees that the support of each investor’s posterior beliefs

after a pass grade is announced is not connected. Connectedness of the supports facilitates

rationalizable profiles where some investors refrain from pledging.

Next, suppose that the intervals
(
θi, θ̄i

]
⊂
(
0, θMS

]
, i = 1, ..., N , receiving a pass grade are

far apart, implying that the policy maker fails an interval (θ′, θ′′] ⊂ (0, θMS] of large Lebesgue

measure (note that this is indeed the case under the optimal monotone deterministic rule with

cutoff θ∗σ, where θ∗σ is as defined in (4).30 The detailed derivations in the Online Appendix

then show that, starting from Γ, the policy maker could assign a pass grade to fundamentals

in the middle of [θ′, θ′′] and a fail grade to some fundamentals to the right of θ′′, in such a way

that (a) pledging continues to be the unique rationalizable action for all investors after hearing

a pass grade, and (b) the set of fundamentals receiving a pass grade under the new policy is

strictly larger than under the original one. Furthermore, the construction sketched above can

be iterated till one arrives at a new policy with a mesh smaller than E(σ) under which regime

change (i.e., default)occurs over a set of fundamentals of strictly smaller measure than under

the original policy. When the benefit W (θ) − L(θ) of avoiding default is constant in θ , the

new policy thus yields the policy maker a strictly higher payoff than the original one.

Finally, one can show that, when σ is small, a pass grade can be given to all θ > θMS + ε,

with ε > 0 small, while guaranteeing that all investors pledge after the policy maker announces

the pass grade s = 1.31

The above properties thus also imply that if the policy maker is restricted to deterministic

policies (arguably, the most relevant case in practice), when the precision of the investors’

30The subscript simply highlights the dependence of the cutoff θ∗σ on σ.
31Formally, for any ε > 0, there exists σ(ε) such that, for any σ < σ(ε), given any pass/fail policy Γ

satisfying PCP, there exists another pass/fail policy Γ′ also satisfying PCP that agrees with Γ on any θ < θMS

and gives a pass grade to any θ ≥ θMS + ε.
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exogenous information is large, the optimal policy is highly non-monotone over (0, θMS) and

announces a pass grade when fundamentals are above θMS. �

3.3.1 Discussion: role of multiplicity of receivers and exogenous private infor-

mation

It is worth contrasting the above results about the sub-optimality of monotone rules (when

Condition M is violated) to those for economies featuring either a single privately-informed

receiver, or multiple receivers with no exogenous private information.

Single receiver. The optimal policy is a simple monotone pass/fail policy with cutoff equal

to θ∗ = 0. This is because, in this model, the policy maker’s and the receiver’s payoffs are

aligned (they both want to avoid default when possible). With a single receiver, there is no

risk of adversarial coordination and hence the optimal policy coincides with the one that the

designer would select if she trusted the receiver to play favorably to her.

Things are different when preferences are misaligned. To see this, suppose the policy

maker’s payoff is equal to W in case of no default, and L in case of default, with W > L

as in Examples 2 and 3 above. However, now suppose that the receiver’s payoff differential

between pledging and not pledging is equal to −g in case of default and −b in case of no

default, with g > 0 > b. Such a payoff differential may reflect the idea that the receiver is

a speculator whose payoff is zero when he refrains from speculating (equivalently, when he

pledges), is positive when he speculates and default occurs, and is negative when he speculates

and default does not occur. Using the results in Guo and Shmaya (2019), one can then show

that the optimal policy in this case has the interval structure: each type x of the receiver

is induced to play the action favorable to the policy maker (abstain from speculating) over

an interval of fundamentals [θ1(x), θ2(x)], with θ1(x) < 1 < θ2(x), for all x, and with θ1(x)

decreasing in x and θ2(x) increasing in x. Such a policy requires disclosing more than two

signals and hence cannot be implemented through a simple pass/fail test. In contrast, with a

continuum of heterogeneously informed receivers with the same payoffs as in the variant above,

the optimal policy is a pass-fail test that is typically non-monotone in θ.32 Furthermore, when

the optimal policy is not monotone, it does not have the interval structure, as each receiver

32This is because, under MARP, all investors play the friendly action if and only if it is iteratively dominant
for them to do so, irrespective of the alignment in payoffs.
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with signal x is induced to pledge over a non-connected set of fundamentals. The reason for

these differences is that, with a single receiver, to avoid an attack, the policy maker must

persuade the receiver that the fundamentals are likely to be above 1, in which case the attack

is unsuccessful. With multiple receivers, instead, the policy maker must persuade each receiver

that enough other receivers are not attacking, which, as shown above, is best accomplished

by a non-monotone policy that makes it difficult for the receivers to commonly learn the

fundamentals, when the latter are between 0 and θMS.33

Multiple receivers with no exogenous private information. When all receivers have the

same posterior beliefs, no matter whether payoffs are aligned or mis-aligned, under MARP,

each receiver plays the friendly action only if it is dominant to do so. The optimal policy is a

simple monotone pass/fail policy with cutoff θ∗ implicitly defined by

ˆ 1

θ∗
bdF (θ) +

ˆ ∞
1

gdF (θ) = 0.

The reason why the optimal policy is monotone when the receivers possess no exogenous

private information is that the policy maker needs to convince each of them that θ is above 1

with sufficiently high probability to make the friendly action dominant.

4 Extensions

In this section we discuss how the results in Theorems 1-3 above extend to richer economies

(see also the Online Appendix for detailed derivations).

Assume that the fundamentals are given by (θ, z), with the two variables imperfectly

correlated. The variable θ continues to parametrize the maximal information the policy maker

can collect about the fundamentals. The additional variable z parametrizes risk that the

investors and the policy maker face at the time of the stress test (e.g., macroeconomic variables

that are only imperfectly correlated with the bank’s fundamentals, and/or the exogenous

supply of funds to the bank from sources other than the investors under consideration). Given

θ, z, and A, default occurs if, and only if, R(θ, A, z) ≤ 0, with the function R continuous,

33Mensch (2021) characterizes general conditions under which the optimal policy is monotone with a single,
uninformed, receiver. Goldstein and Leitner (2018) studies an economy in which these conditions are not
satisfied and the optimal policy is non-monotone. The analysis in these works is very different in that it does
not identify the role that coordination and the receivers’ private information play for the optimal policy.
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strictly increasing in (θ, A, z), and such that R(θ, 1, z) = R(θ̄, 0, z) = 0, for some θ, θ̄ ∈ R,

with θ < θ̄. The function R thus implicitly defines the critical size of the pledge necessary for

the bank to avoid default. The policy maker’s payoff is equal to

ÛP (θ, A, z) = Ŵ (θ, A, z)1 {R(θ, A, z) > 0}+ L̂(θ, A, z)1 {R(θ, A, z) ≤ 0} , (6)

whereas the investors’ payoff differential between playing the “friendly” action (pledging to

the bank, or abstaining from speculating against it) and the “adversarial” action (refusing to

pledge, or speculating against the bank) is equal to

û(θ, A, z) = ĝ(θ, A, z)1 {R(θ, A, z) > 0}+ b̂(θ, A, z)1 {R(θ, A, z) ≤ 0} . (7)

In the Online Appendix, we first identify conditions on the investors’ payoffs such that,

for any Γ, MARP (a) continues to coincide with the “smallest” rationalizable profile and (b),

when the investors’ signals satisfy MLRP, is in monotone (i.e., cutoff) strategies.

Next, we identify a condition on the policy maker’s payoff such that the optimal policy

continues to satisfy PCP, thus generalizing Theorem 1 above. Roughly, the condition says that

the loss to the policy maker from having no investor pledging in those states in which, under

MARP consistent with the policy Γ, the investors’ expected payoff differential is negative is

more than compensated by the benefit from having all investors pledging in those states in

which their expected payoff differential is positive. The condition, which is trivially satisfied

when W and L do not depend on A as in the baseline model of Section 2, thus requires that

the policy maker’s and the investors’ payoffs be not too misaligned.

Equipped with the above two results, we then identify a condition that guarantees that

the optimal policy takes a pass/fail form, thus generalizing Theorem 2.

Finally, we show that, when, in addition, an analog of Condition M holds, the optimal

policy is monotone and deterministic in the component of the fundamentals θ that is observable

to the policy maker, thus generalizing Theorem 3 above.

The value of these generalizations is that they permit one to study the comparative statics

of optimal policies in various micro-founded economies in which for example banks issue

different securities to finance their short-term obligations and where the price of the securities

is endogenous and influenced by the outcome of the disclosure policy (see the file “Additional
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Material” on the authors’ webpages for a few examples along these lines).

5 Conclusions

We consider the design of public information in coordination settings in which the designer

does not trust the receivers to play favorably to her. We show that, despite the fear of

adversarial coordination, the optimal policy induces all receivers to take the same action.

Importantly, while each investor can perfectly predict the action of any other investor, she is

not able to predict the beliefs that rationalize such actions. We identify conditions under which

the optimal policy has a pass/fail structure, as well as conditions under which the optimal

policy is monotone, passing institutions with strong fundamentals and failing the others.

The results are worth extending in a few directions. The analysis assumes that the policy

maker is Bayesian and knows the distribution from which the investors’ exogenous private

information is drawn. While this is a natural starting point, in future work it would be

interesting to investigate how the structure of the optimal policy is affected by the policy

maker’s uncertainty about the investors’ information sources.34

The analysis in the present paper is static. Many applications of interest are dynamic, with

investors coordinating on multiple attacks and/or learning over time (for the role of dynamics

in global games, see, among others, Angeletos et al. (2007)). In future work, it would be

interesting to consider dynamic extensions and investigate how the timing of information

disclosures is affected by the investors’ behavior in previous periods.35

Finally, the analysis is conducted by assuming that the maximal information that the

designer can collect about the fundamentals (in the paper, θ) is exogenous. In future work,

it would be interesting to accommodate for the possibility that part of the information is

provided by the banks themselves. This creates an interesting screening+persuasion problem

in the spirit of the literature on privacy in sequential contacting (see, e.g., Calzolari and Pavan

(2006a) Calzolari and Pavan (2006b), Dworczak (2020)).

34See Dworczak and Pavan (2022) for a notion of robustness in information design that accounts for this
type of ambiguity.

35For models of dynamic persuasion, see, among others, Ely (2017) and Basak and Zhou (2020b).
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Appendix

Proof of Theorem 1. Given any regular policy Γ = (S, π) and any n ∈ N, let T Γ
(n) be the set

of strategies surviving n rounds of IDISDS, with T Γ
(0) denoting the entire set of strategy profiles

a = (ai(·))i∈[0,1], where for any i ∈ [0, 1], ai(x, s) denotes the probability investor i pledges,

given (x, s). Let aΓ
(n) ≡

(
aΓ

(n),i(·)
)
i∈[0,1]∈ T Γ

(n) denote the most aggressive profile surviving n

rounds of IDISDS (that is, the profile in T Γ
(n) that is most adversarial to the policy maker,

in the sense that it minimizes the policy maker’s ex-ante payoff). The profiles
(
aΓ

(n)

)
n∈N

can

be constructed inductively as follows. The profile aΓ
(0) ≡

(
aΓ

(0),i(·)
)
i∈[0,1]

prescribes that all

investors refrain from pledging, irrespective of (x, s). Next, let UΓ
i (xi, s; a) denote the payoff

differential between pledging and not pledging for investor i when, under Γ, all other investors

follow the strategy in a. Then, aΓ
(n),i(xi, s) = 0 if UΓ

i

(
xi, s; a

Γ
(n−1)

)
≤ 0 and aΓ

(n),i(xi, s) = 1 if

UΓ
i

(
xi, s; a

Γ
(n−1)

)
> 0. MARP consistent with Γ is then the profile aΓ = (aΓ

i (·))i∈[0,1] given by

aΓ
i (·) = lim

n→∞
aΓ

(n),i(·), all i ∈ [0, 1].

Next, consider the policy Γ+ = (S+, π+), S+ ≡ S×{0, 1}, that, for each θ, draws the score

s from the same distribution π(θ) ∈ ∆(S) as the original policy Γ, and then, for each s it

draws, it also announces the sign of the investors’ payoff differential at (θ, s), when investors

play according to MARP aΓ consistent with the original policy Γ. In the baseline model of

Section 2, the sign of such payoff differential is uniquely determined by the regime outcome

rΓ(θ, s). For any θ, and any s ∈ supp(π(θ)), the new policy Γ+ thus announces
(
s, rΓ(θ, s)

)
.

Define T Γ+

(n) and aΓ+

(n) analogously to T Γ
(n) and aΓ

(n), but with respect to the policy Γ+.

The proof is in three steps. Steps 1 and 2 show that any investor i who, given (xi, s),

finds it dominant (alternatively, iteratively dominant) to pledge under Γ also finds it dominant

(alternatively, iteratively dominant) to pledge under Γ+ when receiving information (xi, (s, 1)).

Step 3 uses the above property to establish that, because the game is supermodular and aΓ+
is

“less aggressive” than aΓ (meaning that any investor who, given (x, s), pledges under aΓ also

pledges under aΓ+
when receiving the information (x, (s, 1)), then, under aΓ+

, all investors

pledge (alternatively, refrain from pledging) when receiving information (s, 1) (alternatively,

(s, 0)).

Step 1. First, we prove that, (xi, s) : UΓ
i (xi, s; a) > 0 ∀a} ⊆ {(xi, s) : UΓ+

i (xi, (s, 1); a) >

0 ∀a}, for all i ∈ [0, 1]. That is, any investor i who, under Γ, finds it dominant to pledge,
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given the information (xi, s), also finds it dominant to pledge under Γ+ when receiving the

information (xi, (s, 1)).

First, note that the supermodularity of the game implies that {(xi, s) : UΓ
i (xi, s; a) >

0 ∀a} = {(xi, s) : UΓ
i (xi, s; a

Γ
(0)) > 0} and {(xi, s) : UΓ+

i (xi, (s, 1); a) > 0 ∀a} = {(xi, s) :

UΓ+

i (xi, (s, 1); aΓ+

(0)) > 0}.

Now let ΛΓ
i (θ,x|xi, s) denote the beliefs of investor i ∈ [0, 1] over θ and the cross-sectional

distribution of signals, x ∈ R[0,1], when receiving information (xi, s) ∈ R × S under Γ, and

ΛΓ+

i (θ,x|xi, (s, 1)) the corresponding beliefs under Γ+. Bayesian updating implies that

ΛΓ+

i (d(θ,x)|xi, (s, 1)) =
1
(
rΓ(θ, s) = 1

)
ΛΓ
i (1|xi, s)

ΛΓ
i (d(θ,x)|xi, s), (8)

where 1
(
rΓ(θ, s) = 1

)
is the indicator function, taking value 1 if θ is such that rΓ(θ, s) = 1,

and 0 otherwise, and where ΛΓ
i (1|xi, s) ≡

´
{(θ,x):rΓ(θ,s)=1} ΛΓ

i (d(θ,x)|xi, s).

Next, observe that, under both aΓ
(0) and aΓ+

(0) , default occurs if, and only if, θ ≤ 1. Take

any i ∈ [0, 1] and (xi, s) ∈ R× S such that

UΓ
i

(
xi, s; a

Γ
(0)

)
=

ˆ
(θ,x)

(b(θ)1 (θ ≤ 1) + g(θ)1(θ > 1)) ΛΓ
i (d(θ,x)|xi, s) > 0. (9)

The aforementioned property of Bayesian updating implies that

UΓ+

i (xi, (s, 1); aΓ+

(0))Λ
Γ
i (1|xi, s) =

´
(θ,x) (b(θ)1 (θ ≤ 1) + g(θ)1(θ > 1))1(rΓ(θ, s) = 1)ΛΓ

i (d(θ,x)|xi, s)
≥
´

(θ,x) (b(θ)1 (θ ≤ 1) + g(θ)1(θ > 1)) ΛΓ
i (d(θ,x)|xi, s) = UΓ

i ((xi, s); a
Γ
(0)) > 0,

where the first equality follows from (8), the first inequality from the fact that, for all θ such

that rΓ(θ, s) = 0, b(θ)1 (θ ≤ 1) + g(θ)1(θ > 1) = b(θ) < 0, the second equality follows from

the definition of UΓ
i

(
xi, s; a

Γ
(0)

)
, and the second inequality from (9). Thus, any investor for

whom pledging was dominant after receiving information (xi, s) under Γ, continues to find it

dominant to pledge after receiving information (xi, (s, 1)) under Γ+.

Step 2. Next, take any n > 1. Assume that, for any 1 ≤ k ≤ n− 1, any i ∈ [0, 1],

{(xi, s) : UΓ
i (xi, s; a) > 0 ∀a ∈ T Γ

(k−1)} ⊆ {(xi, s) : UΓ+

i (xi, (s, 1); a) > 0, ∀a ∈ T Γ+

(k−1)}. (10)
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Arguments similar to those establishing the result in Step 1 above imply that

{(xi, s) : UΓ
i (xi, s; a) > 0 ∀a ∈ T Γ

(n−1)} ⊆ {(xi, s) : UΓ+

i (xi, (s, 1); a) > 0, ∀a ∈ T Γ+

(n−1)}. (11)

Intuitively, the result follows from the following two properties: (a) because the game is

supermodular, {(xi, s) : UΓ
i (xi, s; a) > 0 ∀a ∈ T Γ

(n−1)} = {(xi, s) : UΓ
i

(
xi, s; a

Γ
(n−1)

)
> 0}

where recall that aΓ
(n−1) is the most aggressive profile surviving n − 1 rounds of IDISDS

(clearly, the same property holds for Γ+); (b) aΓ+

(n−1) is “less aggressive” than aΓ
(n−1), in the

sense that any investor who, given (x, s), pledges under aΓ
(n−1) also pledges under Γ+ when

receiving information (x, (s, 1)); and (c) the observation that rΓ(θ, s) = 1 removes from the

support of the investors’ posterior beliefs states in which default would have occurred under

aΓ and hence under aΓ
(n−1) as well (observe that aΓ

(n−1) is more aggressive that aΓ, meaning

that any investor who, given (x, s), pledges under aΓ
(n−1), also pledges under aΓ when receiving

the same information (x, 1)).

Step 3. Equipped with the results in steps 1 and 2 above, we now prove that, for all

θ ∈ Θ and all s ∈ supp(π(θ)) such that rΓ(θ, s) = 1, for any x ∈ X(θ), and any i ∈ [0, 1],

aΓ+

i (xi, (s, 1)) ≡ lim
n→∞

aΓ+

(n),i(xi, (s, 1)) = 1. This follows directly from the fact that, as shown

above, aΓ
i (xi, s) = 1⇒ aΓ+

i (xi, (s, 1)) = 1. The announcement that θ is such that rΓ(θ, s) = 1

thus reveals to each investor that, when investors play according to MARP aΓ+
consistent

with the new policy Γ+, default does not occur. Because the payoff from pledging is strictly

positive when default does not occur, any investor i receiving information (s, 1) under Γ+ thus

necessarily pledges, no matter xi. Under the new policy Γ+, all investors thus pledge when

they learn that θ is such that rΓ(θ, s) = 1. That they all refrain from pledging when they

learn that θ is such that rΓ(θ, 0) = 0 follows from the fact that such an announcement makes

it common certainty that θ ≤ 1.

We conclude that the new policy Γ+ satisfies the perfect-coordination property and is such

that, for any θ, the probability of default under Γ+ is the same as under Γ. The result in the

theorem then follows by taking Γ∗ = Γ+. Q.E.D.

Proof of Theorem 2. The proof is in 2 steps. Step 1 shows that, when p(x|θ) is log-

supermodular, i.e., it satisfies MLRP, then, irrespective of Γ, MARP is in cut-off strategies.

Step 2 then shows that, starting from any Γ satisfying the perfect-coordination property, one
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can drop any signal other than the predicted regime outcome without changing the investors’

behavior.

Step 1. Fix an arbitrary policy Γ = (S, π) and, for any pair (x, s) ∈ R×S, let ΛΓ(θ|x, s)

represent the endogenous posterior beliefs over Θ of each investor receiving exogenous infor-

mation x and endogenous information s. Let u(θ, A) ≡ g(θ)1(A > 1− θ) + b(θ)1(A ≤ 1− θ)

be the payoff differential between pledging and not pledging when the fundamentals are θ and

the aggregate size of the pledge is A.

Next, let UΓ(x, s|k) ≡
´
u(θ, 1−P (k|θ))dΛΓ(θ|x, s) denote the expected payoff differential

of an investor with information (x, s), when all other investors follow a cut-off strategy with

cut-off k (i.e., they pledge if their private signal exceeds k and refrain from pledging if it is

below k). The following result establishes that, when the distribution p(x|θ) from which the

signals are drawn satisfies MLRP, no matter Γ, MARP is in cut-off strategies:

Lemma 1. Suppose that p(x|θ) is log-supermodular. Given any policy Γ = (S, π), for any

s ∈ S, there exists ξΓ;s ∈ R such that MARP consistent with Γ is given by the strategy

profile aΓ ≡ (aΓ
i )i∈[0,1] such that, for any s ∈ S, x ∈ R, i ∈ [0, 1], aΓ

i (x, s) = 1{x > ξΓ;s}

with ξΓ;s ≡ sup{x : UΓ(x, s|x) ≤ 0} if {x : UΓ(x, s|x) ≤ 0} 6= ∅, and ξΓ;s ≡ −∞ otherwise.

Moreover, the strategy profile aΓ is a BNE of the continuation game that starts with the

announcement of the policy Γ.

Proof of Lemma 1. Fix the policy Γ = (S, π). For any s ∈ S, let ξΓ;s
(1) ≡ sup{x :

lim
k→∞

UΓ(x, s|k) ≤ 0}. Given the public signal s, it is dominant for any investor with private

signal x exceeding ξΓ;s
1 to pledge. Next, recall that, for any n ∈ N, T Γ

(n) denotes the set of

strategy profiles that survive the first n rounds of IDISDS and aΓ
(n) ≡

(
aΓ

(n),i

)
i∈[0,1]

denotes the

most aggressive profile in T Γ
(n). Observe that the profile aΓ

(1) is given by aΓ
(1),i(x, s) = 1{x > ξΓ;s

(1) }

for all (x, s) ∈ R× S, and all i ∈ [0, 1], and minimizes the policy maker’s payoff not just in

expectation but for any (θ, s). This follows from the fact that, when nobody else pledges, the

expected payoff differential
´
u(θ, 0)dΛΓ(θ|x, s) between pledging and not pledging crosses 0

only once and from below at x = ξΓ;s
(1) . The single-crossing property of

´
u(θ, 0)dΛΓ(θ|x, s) in

turn is a consequence of the fact that u(θ, 0) crosses 0 only once from below at θ = 1 along

with Property SCB below.

Property SCB. Suppose that h : R→ R crosses 0 only once from below at θ = θ0 (that is,
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h (θ) ≤ 0 for all θ ≤ θ0 and h (θ) ≥ 0 for all θ > θ0). Let q : R2 → R+ be a log-supermodular

function and suppose that, for any θ, there is an open interval %θ = (%θ, %̄θ) ⊂ R containing

θ such that q (x, θ) > 0 for all x ∈ %θ and q (x, θ) = 0 for (almost) all x ∈ R \ %θ, with the

bounds %θ, %̄θ non-decreasing in θ. Choose any (Lebesgue) measurable subset Ω ⊆ R containing

θ0 and, for any x ∈ R, let Ψ(x; Ω) ≡
´

Ω
h(θ)q(x, θ)dθ. Suppose there exists x? ∈ %θ0 such that

Ψ(x?; Ω) = 0. Then, necessarily, Ψ(x; Ω) ≥ 0 for all x ∈ %θ0 with x > x?, and Ψ(x; Ω) ≤ 0

for all x ∈ %θ0 with x < x?, with both inequalities strict if (a) {θ ∈ Ω : h (θ) 6= 0} has strict

positive Lebesgue measure, (b) q is strictly log-supermodular over R2. 36

Proof of Property SCB. For any x ∈ R, let Ωx ≡ {θ ∈ Ω : x ∈ %θ}. The monotonicity

of %θ in θ implies that Ωx is monotone in x in the strong-order sense. Pick any x′ ∈ %θ0 with

x′ > x?. That x? and x′ belong to %θ0 implies that θ0 ∈ Ωx? ∩ Ωx′ . Next, observe that

Ψ(x′; Ω) =

ˆ
Ωx′

h(θ)q(x′, θ)dθ =

ˆ
Ωx′∩Ωx?

h(θ)q(x′, θ)dθ +

ˆ
Ωx′\Ωx?

h(θ)q(x′, θ)dθ

=

ˆ
Ωx?∩Ωx′∩(−∞,θ0)

h(θ)q(x?, θ)
q(x′, θ)

q(x?, θ)
dθ +

ˆ
Ωx?∩Ωx′∩(θ0,∞)

h(θ)q(x?, θ)
q(x′, θ)

q(x?, θ)
dθ

+

ˆ
Ωx′\Ωx?

h(θ)q(x′, θ)dθ

≥ q(x′, θ0)

q(x?, θ0)

(ˆ
Ωx?∩Ωx′∩(−∞,θ0)

h(θ)q(x?, θ)dθ +

ˆ
Ωx?∩Ωx′∩(θ0,∞)

h(θ)q(x?, θ)dθ

)
+

+

ˆ
Ωx′\Ωx?

h(θ)q(x′, θ)dθ

≥ q(x′, θ0)

q(x?, θ0)
Ψ(x?; Ω)︸ ︷︷ ︸

=0

+

ˆ
Ωx′\Ωx?

h(θ)q(x′, θ)dθ ≥ 0.

The first equality follows from the fact that q(x′, θ) = 0 for almost all θ ∈ Ω \ Ωx′ . The

second equality follows from the fact that Ωx′ can be partitioned into Ωx′ ∩Ωx? and Ωx′ \Ωx? .

The third equality follows from noting that q(x?, θ) > 0 for all θ ∈ Ωx? . The first inequality

obtains from the monotonicity of q(x′, θ)/q(x?, θ) over Ωx? ∩ Ωx′ as a consequence of q being

log-supermodular, along with the fact that θ0 ∈ Ωx? ∩ Ωx′ and the assumption that h crosses

0 once from below at θ = θ0. The second inequality follows from the fact that, for any θ ∈

(Ωx? \ Ωx′)∩(−∞, θ0), h(θ) ≤ 0, along with the fact that Ωx?∩(θ0,+∞) = Ωx?∩Ωx′∩(θ0,∞),

36That q is strictly log-supermodular over R2 also implies that q(x, θ) > 0 for all (x, θ) ∈ R2.
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with the last property following from noting that the sets Ωx are ranked in the strong-order

sense. The last inequality follows from the observation that, for any θ ∈ Ωx′ \ Ωx? , h (θ) ≥ 0,

which in turn is a consequence of (i) the monotonicity of the sets Ωx in x, (ii) the assumption

that h crosses 0 only once from below at θ = θ0, and (iii) the assumption that θ0 ∈ Ωx? ∩Ωx′ .

Similar arguments imply that, for x < x? , Ψ(x; Ω) ≤ 0. The same arguments also imply

that, when (a) {θ ∈ Ω : h (θ) 6= 0} has strict positive Lebesgue measure and (b) q is strictly

log-supermodular over R2, then Ψ(x; Ω) < 0 for all x < x? and Ψ(x; Ω) > 0 for all x > x?.

This completes the proof of Property SCB. �

The facts that (a) the continuation game is supermodular, (b) the density p(x|θ) is log-

supermodular, and (c) when investors follow monotone strategies, the regime outcome is

monotone in θ imply that, for any s ∈ S, there exists a unique sequence
(
ξΓ;s

(n)

)
n∈N

such that,

for any n ≥ 1, aΓ
(n) is such that aΓ

(n),i(x, s) = 1{x > ξΓ;s
(n)} for all i and all (x, s) ∈ R× S, with

each ξΓ;s
(1) as defined above, and with all other cut-offs ξΓ;s

(n), n > 1, s ∈ S, defined inductively

by ξΓ;s
(n) ≡ sup{x : UΓ(x, s|ξΓ;s

(n−1)) ≤ 0}.

Let T Γ ≡ ∩∞n=1T
Γ
n denote the set of strategy profiles that are rationalizable for investors

under Γ. The most aggressive strategy profile in T Γ is then given by aΓ
i (x, s) ≡ 1{x > ξΓ;s}

for all i and all (x, s) ∈ R× S, where, for any s ∈ S, ξΓ;s ≡ lim
n→∞

ξΓ;s
(n). The sequence (ξΓ;s

(n))n is

monotone and its limit is given by ξΓ;s = sup{x : UΓ(x, s|x) ≤ 0} if {x : UΓ(x, s|x) ≤ 0} 6= ∅,

and ξΓ;s ≡ −∞ otherwise. This establishes the first part of the lemma. That the profile aΓ is

a BNE for the continuation game that starts with the announcement of the policy Γ follows

from the fact that, given any s∈ S, when all investors follow a cut-off strategy with cutoff

ξΓ;s, the best response for each investor i ∈ [0, 1] is to pledge for xi > ξΓ;s and to refrain from

pledging for xi < ξΓ;s. This completes the proof of the lemma. �

Step 2. Now take any policy Γ = (S, π) satisfying the perfect-coordination property.

Given the result in Theorem 1, without loss of generality, assume that Γ = (S, π) is such that

S = {0, 1} × Ŝ, for some measurable set Ŝ, and is such that (a) when the policy discloses

any signal s = (ŝ, 1), all investors pledge and default does not happen, whereas (b) when the

policy discloses any signal s = (ŝ, 0), all investors refrain from pledging and default happens.

Equipped with the result in Lemma 1, we show that, starting from Γ = (S, π), one can

construct a binary policy Γ∗ = ({0, 1}, π∗) also satisfying the perfect-coordination property
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and such that the probability of default under Γ∗ is the same as under Γ. The policy Γ∗ =

({0, 1}, π∗) is such that, for any θ, π∗(1|θ) =
´
Ŝ π (d (ŝ, 1) |θ) . That is, for each θ, the binary

policy Γ∗ recommends to pledge with the same total probability as the original policy Γ

discloses signals leading all investors to pledge.37

We now show that, under Γ∗, when the policy announces that s = 1, the unique ratio-

nalizable action for each investor is to pledge. To see this, for any (x, 1) that are mutually

consistent given Γ∗, let UΓ∗(x, 1|k) denote the expected payoff differential for any investor

with private signal x, when the policy Γ∗ announces s = 1, and all other investors follow a

cut-off strategy with cut-off k.38 From the law of iterated expectations, we have that

UΓ∗(x, 1|k) =

ˆ
Ŝ
UΓ(x, (ŝ, 1)|k)ςΓ(dŝ|x, 1) (12)

where ςΓ(·|x, 1) is the probability measure over Ŝ obtained by conditioning on the event (x, 1),

under Γ. For any signal s = (ŝ, 1) in the range of π, MARP consistent with Γ is such that

aΓ
i (x, (ŝ, 1)) = 1 all x ∈ R, meaning that pledging is the unique rationalizable action after Γ

announces s = (ŝ, 1). Lemma 1 in turn implies that, for all s = (ŝ, 1) in the range of π, ŝ ∈ Ŝ,

all k ∈ R, UΓ(k, (ŝ, 1)|k) > 0. From (12), we then have that, for all all k ∈ R , UΓ∗(k, 1|k) > 0.

In turn, this implies that, given the new policy Γ∗, when s = 1 is disclosed, under the unique

rationalizable profile, all investors pledge, that is, aΓ∗
i (x, 1) = 1 all x, all i ∈ [0, 1]. It is also

easy to see that, when the policy Γ∗ discloses the signal s = 0, it becomes common certainty

among the investors that θ ≤ 1. Hence, under MARP consistent with Γ∗, after s = 0 is

disclosed, all investors refrain from pledging, irrespective of their private signals. The new

pass/fail policy Γ∗ so constructed thus (a) satisfies the perfect-coordination property, and (b)

is such that, for any θ, the probability of default under Γ∗ is the same as under Γ. Q.E.D.

Proof of Theorem 3. Without loss of generality, assume that the policy Γ = (S, π) (a)

is a (possibly stochastic) “pass/fail”policy (i.e., S = {0, 1}, with π(1|θ) = 1− π(0|θ) denoting

the probability that signal s = 1 is disclosed when the fundamentals are θ), (b) is such that

π(1|θ) = 0 for all θ ≤ 0 and π(1|θ) = 1 for all θ > 1, and (c) satisfies the perfect-coordination

property. Theorems 1 and 2 imply that, if Γ does not satisfy these properties, there exists

37
´
Ŝ π (d (ŝ, 1) |θ) represents the total probability that the measure π(θ) assigns to signal (ŝ, 1).

38Recall that (x, 1) are mutually consistent under Γ∗ if pΓ∗ (x, 1) ≡
´
p(x|θ)π∗(1|θ)dF (θ) > 0.
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another policy Γ′ that satisfies these properties and yields the policy maker a payoff weakly

higher than Γ. The proof then follows from applying the arguments below to Γ′ instead of Γ.

Suppose that Γ is such that there exists no θ̂ such that π(1|θ) = 0 for F -almost all θ ≤ θ̂

and π(1|θ) = 1 for F -almost all θ > θ̂.39 We establish the result by showing that there exists

a deterministic monotone policy Γθ̂ = ({0, 1}, πθ̂) satisfying the perfect-coordination property

that yields the policy maker a payoff strictly higher than Γ.

Recall that, for the policy Γ to satisfy the perfect-coordination property, it must be that

UΓ(x, 1|x) > 0 for all x such that (x, 1) are mutually consistent, where UΓ(x, 1|x) is the

expected payoff of an investor with signal x who hears from the policy maker that s = 1 and

who expects all other investors to follow a cut-off policy with cut-off x.

Now let G denote the set of policies Γ′ = (S, π′) that, in addition to properties (a) and (b)

above, are such that UΓ′(x, 1|x) ≥ 0 for all x such that (x, 1) are mutually consistent. Observe

that some policies Γ′ in G need not satisfy the perfect-coordination property (namely, those

for which there exists x such that (x, 1) are mutually consistent and UΓ′(x, 1|x) = 0). For any

Γ ∈ G, let UP [Γ] denote the policy maker’s ex-ante expected payoff when, under Γ, investors

pledge after hearing that s = 1 and abstain from pledging after hearing that s = 0. Denote

by arg maxΓ̃∈G{UP [Γ̃]} the set of policies that maximize the policy maker’s payoff over G.40

Step 1 below shows that any Γ
′ ∈ arg maxΓ̃∈G{UP [Γ̃]} is such that π′(1|θ) = 0 for F -almost

all θ ≤ θ∗ and π′(1|θ) = 1 for F -almost all θ > θ∗, where θ∗ is the cut-off defined in (4).

We establish the result by showing that, given any policy Γ′ ∈ G for which there exists no

θ̂ such that π′(1|θ) = 0 for F -almost all θ ≤ θ̂ and π′(1|θ) = 1 for F -almost all θ > θ̂, there

exists another policy Γ′′ ∈ G that that yields the policy maker a payoff strictly higher than Γ′.

This property, together with the fact that any policy Γ′ = ({0, 1}, π′) such that π′(1|θ) = 0

for F -almost all θ ≤ θ̂ and π′(1|θ) = 1 for F -almost all θ > θ̂, for some θ̂, belongs to G only

if θ̂ ∈ [θ∗, 1] then gives the result.

Step 2 then shows that the policy maker’s payoff under the optimal deterministic monotone

policy Γθ
∗

= ({0, 1}, πθ∗) with cut-off θ∗ can be approximated arbitrarily well by a determin-

39Clearly, if the policy Γ = ({0, 1}, π) is such that there does exist θ̂ ∈ [0, 1] such that π(1|θ) = 0 for F -almost

all θ ≤ θ̂ and π(1|θ) = 1 for F -almost all θ ≥ θ̂, then the deterministic monotone policy Γθ̂ = ({0, 1}, πθ̂)
with cut-off θ̂ (that is, the policy such that πθ̂(1|θ) = 1(θ > θ̂) for all θ) also satisfies the perfect-coordination
property and yields the policy maker the same payoff as Γ, in which case the result trivially holds.

40That arg max
Γ̃∈G

{UP [Γ̃]} 6= ∅ follows from the compactness of G and the upper hemi-continuity of UP .
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istic monotone policy Γθ̂ = ({0, 1}, πθ̂) ∈ G that satisfies the perfect-coordination property,

thus establishing the result in the theorem.

For brevity, the proof below considers the case where the prior F from which the funda-

mentals θ are drawn and the distribution P from which the investors’ signals are drawn have

unbounded support: Θ = R and (%θ, %̄θ) = R for all θ ∈ Θ. In the Online Appendix, we

dispense with these restrictions.

Step 1. Take any policy Γ′ ∈ G for which there exists no θ̂ such that π′(1|θ) = 0 for

F -almost all θ ≤ θ̂ and π′(1|θ) = 1 for F -almost all θ > θ̂. Let XΓ′ ≡
{
x : UΓ′(x, 1|x) = 0

}
.

Clearly, if XΓ′ = ∅, there exists another policy Γ
′′ ∈ G that yields the policy maker a payoff

strictly higher than Γ′.41 Thus, assume that XΓ′ 6= ∅, and let x̄ ≡ supXΓ′ .42

For any x, let θ0(x) be the fundamental threshold such that, when investors pledge when

their private signal exceeds x and refrain from pledging otherwise, then their expected payoff

u(θ, 1− P (x|θ)) crosses zero from below at θ = θ0(x).43 For any policy Γ = {{0, 1} , π} ∈ G,

let pΓ(x, 1) ≡
´ +∞
−∞ π(1|θ)p(x|θ)dF (θ) represent the joint probability density of observing the

exogenous signal x and the endogenous signal s = 1. Let

θH ≡ sup {θ ∈ Θ : ∃δ > 0 s.t. π′(1|θ′) < 1 forF -almost all θ′ ∈ [θ − δ, θ)} ,

θL ≡ inf{θ ∈ Θ : ∃δ > 0 s.t. π′(1|θ′) > 0 forF -almost all θ′ ∈ [θ, θ + δ)}.

That Γ′ ∈ G guarantees that θH and θL are well-defined. That, under Γ′, there exists no θ̂

such that π′(1|θ) = 0 for F -almost all θ ≤ θ̂ and π′(1|θ) = 1 for F -almost all θ > θ̂ implies

that θL < θH . Furthermore, u (θL, 1− P (x̄|θL)) < 0.44

We distinguish between two cases.

Case 1 : θ0 (x̄) < θH . Consider the policy Γε,δ = ({0, 1}, πε,δ) defined by πε,δ(1|θ) = π′(1|θ)

for all θ ≤ θ0 (x̄+ δ), with δ > 0 small so that θ0 (x̄+ δ) < θH , and πε,δ(1|θ) = min{π′(1|θ) +

41To see this, note that, because there exists no θ̂ such that π′(1|θ) = 0 for F -almost all θ ≤ θ̂ and π′(1|θ) = 1

for F -almost all θ > θ̂, if XΓ′ = ∅, there must exists a set (θ′, θ′′) ⊆ [0, 1] of F -positive probability over which
π′(1|θ) < 1. The policy Γ′′ can then be obtained from Γ′ by increasing π′(1|θ) over such a set. Provided
the increase is small, the new policy is such that UΓ′′(x, 1|x) ≥ 0 for all x, and hence Γ′′ ∈ G. Because
UP (θ, 1) > UP (θ, 0) over [0, 1], the new policy improves over the original one.

42Clearly, x̄ depends on the policy Γ′. We do not highlight the dependence to ease the notation.
43Because the sign of u(θ, 1 − P (x|θ)) is determined by the regime outcome, θ0 (x) is implicitly defined by

P (x|θ0 (x)) = θ0 (x).
44That u (θL, 1− P (x̄|θL)) < 0 follows from the fact that, by definition, UΓ′(x̄, 1|x̄)pΓ′(x̄, 1) =

´ +∞
θL

u(θ, 1−
P (x̄|θ))π′(1|θ)p(x̄|θ)dF (θ) = 0, together with the single-crossing property of u(θ, 1− P (x̄|θ)) in θ.

40



ε, 1}) for all θ > θ0 (x̄+ δ), with ε > 0 also small. To see that, when ε and δ are small,

Γε,δ ∈ G, note that, by definition of θ0 (·), for any x, and any θ > θ0 (x), u (θ, 1− P (x|θ)) > 0.

This fact, together with the monotonicity of θ0 (·), jointly imply that, for any x ≤ x̄+ δ,

UΓε,δ(x, 1|x)pΓε,δ (x, 1) =
´ θ0(x̄+δ)

−∞ u(θ, 1− P (x|θ))π′(1|θ)p(x|θ)dF (θ)

+
´ +∞
θ0(x̄+δ)

u(θ, 1− P (x|θ)) min{π′(1|θ) + ε, 1})p(x|θ)dF (θ) > UΓ′(x, 1|x)pΓ′ (x, 1) ≥ 0.

The strict inequality follows from the fact that, for any θ ∈ [θ0 (x̄+ δ) , θH ], πε,δ(1|θ) ≥ π′(1|θ),

with the inequality strict over a subset of [θ0 (x̄+ δ) , θH ] of strictly positive F -measure, along

with the fact that, because x ≤ x̄+ δ, u (θ, 1− P (x|θ)) > 0 for all θ ≥ θ0 (x̄+ δ). That, when

ε > 0 is sufficiently small, UΓε,δ(x, 1|x) > 0 also for all x > x̄ + δ follows from the fact that,

by definition of x̄, for any x > x̄+ δ, UΓ′(x, 1|x) is bounded away from 0 along with the fact

that, for any δ > 0, the function family
(
UΓε,δ(·, 1|·)

)
ε

is continuous in ε in the sup-norm, in

a neighborhood of 0.45

Case 2: θ0 (x̄) ≥ θH . Consider the monotone policy Γ0 = {{0, 1} , π0} such that π0 (1|θ) ≡

1 (θ ≥ 0). Note that, for any x ≥ x̄,

UΓ′(x, 1|x)pΓ′ (x, 1) =
´∞

0
u(θ, 1− P (x|θ))π′(1|θ)p(x|θ)dF (θ)

>
´∞

0
u(θ, 1− P (x|θ))p(x|θ)dF (θ) = UΓ0

(x, 1|x)pΓ0
(x, 1) ,

where the inequality follows from the fact that (i) u (θ, 1− P (x|θ)) < 0 for any θ ≤ θ0 (x)

along with (ii) the fact that π′(1|θ) = 1 for F -almost all θ ≥ θ0 (x) ≥ θ0 (x̄) ≥ θH . As a result,

UΓ0

(x̄, 1|x̄) < UΓ′(x̄, 1|x̄)pΓ′ (x̄, 1) /pΓ0

(x̄, 1) = 0.

We conclude that, necessarily, x̄ < x̄G, where x̄G is the threshold defined in (2). This property

in turn permits us to apply part (3) of Condition M to x̄ in the arguments below.

For any γ > 0, let θγL ≡ θL + γ and θγH ≡ θH − γ. Pick γ, eL, eH > 0 small such that

(i) π′ (1|θγL) > 0 and π′ (1|θ) > 0 for F−almost θ ∈ (θγL, θ
γ
L + eL), (ii) π′ (1|θγH) < 1 and

π′ (1|θ) < 1 for F−almost all θ ∈ (θγH − eH , θ
γ
H), and (iii) θγL + eL < θγH − eH .46 Next, pick

η ∈ (0, x̄G − x̄) small such that UΓ′(x, 1|x) > η for all x ≥ x̄ + η. Pick ε > 0 also small and

45This means that, for any z > 0, there exists ∆ > 0 such that, for any 0 ≤ ε < ∆, and all x, |UΓε,δ(x, 1|x)−
UΓ0,δ

(x, 1|x)| ≤ z, where, by definition, Γ0,δ = Γ′.
46If a single γ satisfying properties (i)-(iii) does not exist, let γ = (γL, γH)∈ R2

++. The arguments below
then apply verbatim by letting θγL = θL + γL and θγH = θH + γH and noting that a γ = (γL, γH) satisfying
properties (i)-(iii) always exists.
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let δ(ε, η) be implicitly defined by

ˆ ∞
−∞

u(θ, 1−P (x̄+η|θ))
(
π′(1|θ)1(θγL, θ

γ
L + ε)− (1− π′(1|θ))1(θγH − δ(ε, η), θγH)

)
p(x̄+η|θ)dF (θ) = 0.

(13)

For ε > 0 small, θγL + ε < θγH − δ(ε, η). Consider the policy Γε,γ,η = {{0, 1}, πε,γ,η} defined by

the following properties: (a) πε,γ,η(1|θ) = π′(1|θ) for all θ /∈ {[θγL, θ
γ
L + ε] ∪ [θγH − δ(ε, η), θγH ]};

(b) πε,γ,η(1|θ) = 0 for all θ ∈ [θγL, θ
γ
L + ε]; and (c) πε,γ,η(1|θ) = 1 for all θ ∈ [θγH − δ(ε, η), θγH ].

Note that Condition (13) implies that UΓε,γ,η(x̄+ η, 1|x̄+ η) = UΓ′(x̄+ η, 1|x̄+ η) > 0.

We now show that, under the new policy, UΓε,γ,η(x, 1|x) ≥ 0 for any x, which means

that Γε,γ,η ∈ G. Recall that, for any θ ∈ (0, 1), x∗(θ) is the critical threshold such that,

when investors pledge for x > x∗(θ) and do not pledge for x < x∗(θ), default occurs when

fundamentals are below θ and does not occur when they are above θ, and hence u(θ̃, 1 −

P (x∗(θ)|θ̃) turns from negative to positive at θ̃ = θ.

Clearly, for any (ε, γ, η), and any x ≤ x∗(θL), UΓ′(x, 1|x), UΓε,γ,η(x, 1|x) > 0. This

is because, for any such x, θ0(x) < θL and hence u (θ, 1− P (x|θ)) > 0 for all θ > θL.

The result then follows from the fact that, under both Γ′ and Γε,γ,η,
´ θL
−∞ π

′ (1|θ) dF (θ) =´ θL
−∞ π

ε,γ,η (1|θ) dF (θ) = 0, meaning that all investors assign probability one to the event

that θ ≥ θL. Furthermore, that UΓ′(x∗(θL), 1|x∗(θL)) > 0 along with the continuity of

UΓ′(x, 1|x)pΓ′ (x, 1) =
´
u(θ, 1−P (x|θ))π′(1|θ)p(x|θ)dF (θ) in x and the fact that UΓ′(x, 1|x) >

η for all x ≥ x̄+η imply that there exists ξ > 0 such that, for any x ∈ [x∗(θL), x∗(θL) + ξ]∪[x̄+

η,+∞), UΓ′(x, 1|x)pΓ′ (x, 1) > ξ. Because, for any η, the family (UΓε,γ,η(·, 1|·)pΓε,γ,η (·, 1))ε,γ

is continuous in (γ, ε) in the sup-norm, in a neighborhood of (0, 0)47 and x∗ (θ) is continu-

ous in θ, there exist γ̄, ε̄ > 0 such that, when γ ≤ γ̄ and ε ≤ ε̄, UΓε,γ,η(x, 1|x) ≥ 0 for any

x ∈ (−∞, x∗ (θγL + ε)] ∪ [x̄+ η,+∞).

Next observe that, for any x ∈ (x∗(θγL + ε), x∗ (θγH − δ (ε, η))],

UΓε,γ,η(x, 1|x)pΓε,γ,η(1, x)− UΓ′(x, 1|x)pΓ′(1, x) = −
´ θγL+ε

θγL
u (θ, 1− P (x|θ)) p (x|θ)π′ (1|θ) dF (θ)

+
´ θγH
θγH−δ(ε,η)

u (θ, 1− P (x|θ)) p (x|θ) (1− π′ (1|θ)) dF (θ) > 0,

where the inequality follows from the fact that the integrand in the first integral is negative,

whereas that in the second integral is positive. Because UΓ′(x, 1|x) ≥ 0 for all x, this implies

47This means that, for any z > 0, there exists ∆ > 0 such that, for any (ε, γ) with 0 ≤ ε < ∆ and 0 ≤ γ < ∆,

and all x, |UΓε,γ,η (x, 1|x)− UΓ0,0,η

(x, 1|x)| ≤ z, where, by definition, Γ0,0,η = Γ′.
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that for any such x, UΓε,γ,η(x, 1|x) ≥ 0.

Next, consider x ∈ (x∗ (θγH − δ (ε, η)) , x∗(θγH)) and let q (θ, x) ≡ |u (θ, 1− P (x|θ))| p (x|θ) .

For any x ≤ x̄+ η, let ∆U(x) ≡ UΓε,γ,η(x, 1|x)pΓε,γ,η(1, x)−UΓ′(x, 1|x)pΓ′(1, x). Note that, for

any x ∈ (x∗ (θγH − δ (ε, η)) , x∗(θγH)),

∆U(x) =

ˆ θγH−δ(ε,η)

θγL

−u (θ, 1− P (x|θ)) p (x|θ) (π′ (1|θ)− πε,γ,η (1|θ)) dF (θ)

+

ˆ θ0(x)

θγH−δ(ε,η)

−u (θ, 1− P (x|θ)) p (x|θ) (π′ (1|θ)− πε,γ,η (1|θ)) dF (θ)

+

ˆ θγH

θ0(x)

−u (θ, 1− P (x|θ)) p (x|θ) (π′ (1|θ)− πε,γ,η (1|θ)) dF (θ)

≥
ˆ θγH−δ(ε,η)

θγL

q (θ, x)

q (θ, x̄+ η)
q (θ, x̄+ η) (π′ (1|θ)− πε,γ,η (1|θ)) dF (θ)

+

ˆ θ0(x)

θγH−δ(ε,η)

q (θ, x)

q (θ, x̄+ η)
q (θ, x̄+ η) (π′ (1|θ)− πε,γ,η (1|θ)) dF (θ)

+
q(θγH − δ(ε, η), x)

q(θγH − δ(ε, η), x̄+ η)

ˆ θγH

θ0(x)

q (θ, x̄+ η) (π′ (1|θ)− πε,γ,η (1|θ)) dF (θ)

≥ q(θγH − δ(ε, η), x)

q(θγH − δ(ε, η), x̄+ η)

ˆ θγH

θγL

q (θ, x̄+ η) (π′ (1|θ)− πε,γ,η (1|θ)) dF (θ)

=
q(θγH − δ(ε, η), x)

q(θγH − δ(ε, η), x̄+ η)
∆U(x̄+ η) = 0.

The first equality is by definition. The first inequality follows from the fact that (i) for any

θ ≤ θ0(x), u (θ, 1− P (x|θ)) < 0, whereas, for any θ > θ0(x), u (θ, 1− P (x|θ)) > 0, along

with the fact that (ii) for θ ∈ [θ0(x), θγH ], π′ (1|θ) ≤ πε,γ,η (1|θ). Together, these two properties

imply that

ˆ θγH

θ0(x)

−u (θ, 1− P (x|θ)) p (x|θ) (π′ (1|θ)− πε,γ,η (1|θ)) dF (θ)

≥ 0 ≥ q(θγH − δ(ε, η), x)

q(θγH − δ(ε, η), x̄+ η)

ˆ θγH

θ0(x)

q (θ, x̄+ η) (π′ (1|θ)− πε,γ,η (1|θ)) dF (θ) .

The second inequality follows from the fact that π′ (1|θ) − πε,γ,η (1|θ) turns from positive

to negative at θ = θγH − δ(ε, η) ≤ θ0(x), along with the fact that, for any θ ∈ [θγL, θ0 (x)],

the function q(θ, x)/q(θ, x̄ + η) is non-increasing in θ as implied by the log-supermodularity
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of |u (θ, 1− P (x|θ))| p (x|θ) over {(θ, x) ∈ [0, 1]× R : u(θ, 1− P (x|θ)) ≤ 0}, by virtue of part

2 of Condition M. Finally, the last two equalities follow from the fact that θ0(x̄ + η) >

θ0(x̄) > θH ≥ θγH , which implies that u(θ, 1 − P (x̄ + η|θ)) ≤ 0 for all θ ≤ θγH , and hence

that
´ θγH
θγL

q (θ, x̄+ η) (π′ (1|θ)− πε,γ,η (1|θ)) dF (θ) = ∆U(x̄ + η), along with the fact that, by

construction of the policy Γε,γ,η, ∆U(x̄+η) = 0. Hence, for any x ∈ (x∗ (θγH − δ (ε, η)) , x∗(θγH)),

∆U(x) ≥ 0, which implies that UΓε,γ,η(x, 1|x) ≥ 0.

Similar arguments imply that, for any x ∈ [x∗(θγH), x+ η],

∆U(x) =

ˆ θγH

θγL

−u (θ, 1− P (x|θ)) p (x|θ) (π′ (1|θ)− πε,γ,η (1|θ)) dF (θ)

=

ˆ θγH−δ(ε,γ)

θγL

q (θ, x)

q (θ, x̄+ η)
q (θ, x̄+ η) (π′ (1|θ)− πε,γ,η (1|θ)) dF (θ)

+

ˆ θγH

θγH−δ(ε,η)

q (θ, x)

q (θ, x̄+ η)
q (θ, x̄+ η) (π′ (1|θ)− πε,γ,η (1|θ)) dF (θ)

≥ q(θγH − δ(ε, η), x)

q(θγH − δ(ε, η), x̄+ η)
∆U(x̄+ η) = 0,

which implies that, for such x too, UΓε,γ,η(x, 1|x) ≥ 0.48

We conclude that, when ε, γ, η are small, UΓε,γ,η(x, 1|x) ≥ 0 for all x and hence Γε,γ,η ∈ G.

We now show that, when property 3 in Condition M holds, the new policy yields the policy

maker an expected payoff strictly higher than Γ′. To see this, observe that, fixing (γ, η), for

any ε > 0, the policy maker’s payoff under the policy Γε,γ,η is equal to

UP [Γε,γ,η] =

ˆ θγL+ε

−∞
UP (θ, 0)dF (θ) +

ˆ θγH

θγH−δ(ε,η)

UP (θ, 1)dF (θ)

+

ˆ
(θγL+ε,θγH−δ(ε,η))∪(θγH ,+∞)

{
π′(1|θ)UP (θ, 1) + (1− π′(1|θ))UP (θ, 0)

}
dF (θ) .

48The first equality is by definition. The second equality follows from the fact that, for such x, u(θ, 1 −
P (x|θ)) ≤ 0 for all θ ≤ θγH . The inequality follows from the fact that q(θ, x)/q(θ, x̄+ η) is non-increasing in θ
over [θγL, θ

γ
H ] along with the fact that π′ (1|θ)− πε,γ,η (1|θ) changes sign only once, turning from non-negative

to non-positive at θ = θγH − δ(ε, γ).
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Differentiating UP [Γε,γ,η] with respect to ε, and taking the limit as ε→ 0+, we have that

lim
ε→0+

dUP [Γε,γ,η ]
dε

= f(θγH)(1− π′(1|θγH))
[
UP (θγH , 1)− UP (θγH , 0)

](
lim
ε→0+

∂δ(ε,η)
∂ε

)
−f(θγL)π′(1|θγL)

[
UP (θγL, 1)− UP (θγL, 0)

]
= f(θγL)π′(1|θγL)([UP (θγH , 1)− UP (θγH , 0)]

p(x̄+η|θγL)u(θγL,1−P (x̄+η|θγL))

p(x̄+η|θγH)u(θγH ,1−P (x̄+η|θγH))
− [UP (θγL, 1)− UP (θγL, 0)]).

Therefore, lim
ε→0+

dUP [Γε,γ,η ]
dε

> 0 if and only if

UP (θγH , 1)− UP (θγH , 0)

UP (θγL, 1)− UP (θγL, 0)
>
p (x̄+ η|θγH)u (θγH , 1− P (x̄+ η|θγH))

p (x̄+ η|θγL)u (θγL, 1− P (x̄+ η|θγL))
.

Property 3 in Condition M, together with the fact that x̄ ≤ x̄G (as proved above), guarantee

this is the case. We conclude that, when ε is small, the policy Γε,γ,η ∈ G strictly improves

upon Γ′. Furthermore, the construction of Γε,γ,η above can be iterated to arrive to a monotone

deterministic policy. Because any monotone deterministic policy Γθ̂ with cut-off θ̂ > θ∗ yields

the policy maker a payoff strictly smaller than the monotone deterministic policy with cut-off

θ∗ (and no monotone deterministic policy Γθ̂ with cut-ff θ̂ < θ∗ is in G), we conclude that any

policy Γ′ ∈ arg max
Γ̃∈G

{UP [Γ̃]} is such that π′(1|θ) = 0 for F -almost all θ ≤ θ∗ and π′(1|θ) = 1

for F -almost all θ > θ∗.

Step 2. Take any policy Γ′ ∈ arg maxΓ̃∈G{UP [Γ̃]}. The result in step 1 implies that

π′(1|θ) = 0 for F -almost all θ ≤ θ∗ and π′(1|θ) = 1 for F -almost all θ > θ∗. The result in

the theorem then follows from observing that, given Γ′, there exists a nearby deterministic

monotone policy Γθ̂ ∈ G with cut-off θ̂ = θ∗ + ε̃, for ε̃ > 0 but small, such that Γθ̂ satisfies

the perfect-coordination property (i.e., UΓθ̂(x, 1|x) > 0 all x) and yields the policy maker a

payoff arbitrarily close to that under Γ′. Q.E.D.
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